
The odd kid on the block
or: to boldly run ARM like no one did before

Martin Husemann

martin@NetBSD.org

Abstract

Modern ARM SoCs offer bi-endian support: the CPU can switch between little and big endian mode. Similar to the

old hacker phrase "all the world’s a VAX" of course everyone (and most software) expects ARM processors to be

little endian.

Matt Thomas realized this would be an interesting challenge for the NetBSD portability mantra and added support

for this mode to NetBSD/evbarm. When the NetBSD foundation offered me a CubieTruck
[1]

 for my regular “test

runs on strange hardware” lab
[2]

, I decided to use the big endian kernel and see what fallout happens.

This paper describes the problems I found and the solutions chosen.

Of course in the end it is not the identification of a bug that counts, but its elimination. The whole process so far was

a big success: currently the automatic test runs show a tie between armv5-little endian, armv7-big endian, and

sparc64 at the top rank of all architectures with only one unexpected failure in NetBSD-current
[3]

 and zero on the

netbsd-7 branch heading towards the NetBSD 7 release.

1. Pre-Installation Issues

When I got the board, many peripherals did not work.

Luckily Jared McNeill and Matt Thomas fixed most

missing drivers quickly, but I ended up doing the ether-

net and nand driver (the latter is still work in progress

as of the time of this writing).

Ethernet was essential, so creating this driver was the

first thing to do. Initially no documentation was availa-

ble besides u-boot sources and a Linux driver, which as

usual contained various magic numbers without any

explanation. The A20 SoC implements an IP core from

Synopsis Designware, which is also used (apparently in

slightly different or newer versions) in various other

chips – and later we have been able to find documenta-

tion for some of those.

In retrospect, this phase took the most time.

2. The ARM BE8 ELF Image Format

Modern ARM CPUs support big endian mode in a new

way called "be8" (the legacy big endian mode in older

implementations has been renamed to "be32").

The main features of the new big-endian mode are

• Easily switchable at runtime (even in unprivi-

leged/user mode code)

• Instruction encoding is always little endian

The ELF object format
[4]

 for be32 has been "reused" for

be8, but this means all instructions are encoded in the

wrong (big endian) byte order. To allow fixing this, the

ABI defines special symbols marking the beginning of

32bit arm code ($a, $a.*), 16 bit thumb code ($t,

$t.*) or other data ($d, $d.*). Usually the linker

(when invoked with -be8) swaps the instructions ac-

cordingly when generating the final executable image.

This process leaves quite a few chances for Murphy’s

law to hit- and it did.

You may imagine my confusion when first looking at a

core dump where instructions disassembled differently

(due to different endianness decoding of instructions)

and made no sense at all, but the corresponding .o file

disassembled correctly into reasonable instructions, -

while the CPU seemed to agree with the swapped

(completely bogus) code - which caused an exception

(PR 49337
1
).

1
 PR port-arm/49337: __popcountsi2() triggers illegal

instruction; http://gnats.netbsd.org/49337

http://gnats.netbsd.org/49337

3. Big endian Problems found

The big endian testing revealed the following problems:

3.1. Early serial console code had byte order issues

To allow sending debug output to the serial port before

attaching any drivers, a simple polled “early console” is

setup (struct consdev awin_earlycons
2
) and two simple

functions send and receive characters to/from it. Since

there is no suitable bus_space to available yet, this

functions access the hardware registers directly – and

this access was done in host byte order. A noticeable

delay was caused by this, as the hardware never report-

ed TXRDY. The delay was followed by some para-

graphs of garbage output, until finally the kernel con-

sole driver attached and normal boot messages fol-

lowed.

After identifying the issue, the obvious fix was easy:

insert le32toh() calls, like:

while ((le32toh(uart_base[com_lsr])

 && LSR_TXRDY) == 0 && --timo > 0)

 ;

3.2. MMC driver used host endianness in DMA de-

scriptors

A similar error happened in the awin_mmc.c driver.

While standard access to hardware registers automati-

cally deals with host endianness at the bus_space layer,

all DMA descriptors passed to the device or received

from it need special care to ensure the device and the

host CPU talk the same byte-order. This is easy to over-

look, resulting in arbitrary DMA operations overwriting

random memory and (in my case) the device locking up

hard. But it also is easy to fix by inserting htole32
3
 and

le32toh calls (the latter were not needed in this case,

since the device reports all status information via regis-

ters).

3.3. Kernel module loader did not support BE8 instruction

swaps

During automatic test runs the kernel module loader is

exercised. When first tried, this caused crashes, as re-

ported in PR 49299
4
.

The module loadable files are not finally linked

(with -be8 option), but instead handled by the kernel

object loader. The load had to be taught about the mag-

ic $a (and friends) symbols and do byte swapping post-

load. This turned out to be quite simple:

2
 sys/arch/arm/allwinner/awin_board.c, lines 96-125

3
 sys/arch/arm/allwinner/awin_mmc.c, lines 756ff

4
 PR port-arm/49299: earmv7hfeb kernels can not load

modules; http://gnats.netbsd.org/49299

The basic idea of the special marker symbols (as de-

scribed above) is: when running on a BE8 CPU, you

have to know which parts of .text (or other sections

containing program code) are raw data, 32bit arm code,

and 16bit thumb code. Once identified, you swap 32bits

in the arm code sections, or 16bits in the thumb code.

Only the start of the parts is marked with a “$d”, “$a”

or “$t” symbol (or numbered variants of it, like

“$a.1”).

We do the needed byte swapping in the kobj_machdep

function, which is called right after a module has been

loaded and relocations fixed up:

int

kobj_machdep(kobj_t ko, void *base,

 size_t size, bool load)

{

 if (load) {

#if __ARMEB__

 if (CPU_IS_ARMV7_P())

 kobj_be8_fixup(ko);

#endif

Then we need a simple function to categorize symbols:

http://nxr.netbsd.org/xref/src/sys/arch/arm/allwinner/awin_board.c#120
http://nxr.netbsd.org/xref/src/sys/arch/arm/allwinner/awin_mmc.c#759
http://gnats.netbsd.org/49299

/*

 * See ELF for the ARM Architecture,

 Section 4.5.5: Mapping Symbols

 * ARM reserves $a/$d/$t (and variants

 like $a.2) to mark start of

 * arm/thumb code sections to allow

 conversion from ARM32-EB to -BE8

 * format.

 */

static enum be8_magic_sym_type

be8_sym_type(const char *name, int info)

{

 if (ELF_ST_BIND(info) != STB_LOCAL)

 return Other;

 if (ELF_ST_TYPE(info) != STT_NOTYPE)

 return Other;

 if (name[0] != '$' || name[1] == '\0' ||

 (name[2] != '\0' && name[2] != '.'))

 return Other;

 switch (name[1]) {

 case 'a':

 return ArmStart;

 case 'd':

 return DataStart;

 case 't':

 return ThumbStart;

 default:

 return Other;

 }

}

We can then use the convenient ksyms_mod_foreach

iterator function to find all relevant symbols, categorize

them, count them or enter them into a list:

/*

 * Count all special relocations symbols

 */

ksyms_mod_foreach(ko->ko_name,

 be8_ksym_count, &relsym_cnt);

Here is the counting callback function as an example

how the iterator callback looks:

static int

be8_ksym_count(const char *name,

 int symindex, void *value,

 uint32_t size,

 int info, void *cookie)

{

 size_t *res = cookie;

 enum be8_magic_sym_type t =

 be8_sym_type(name, info);

 if (t != Other)

 (*res)++;

 return 0;

}

Straight forward. I am leaving out the boring details of

the other steps, you can check them at

kobj_machdep.c
5
. We need another iterator callback

function to enter the symbols into a pre-allocated array,

then a comparator function to sort symbols by address

via kheapsort, and finally just run through the sorted

array, swapping 16 or 32 bytes – or not at all, depend-

ing on the last symbol marker type we have seen.

Since we inserted this all at the beginning of

kobj_machdep(), cache coherency/flushing is handled

later anyway.

After this change, module loading worked – but showed

another issue (see PR 49396
6
) on machines with large

memory using a direct mapped kernel segment: mod-

ules may be loaded too far away from kernel text – but

this is not BE8 specific. It will be solved by adjusting

compiler options (-mlong-calls or similar), or changing

the location where modules are loaded (like on other

architectures). A combination of MMU details and

possible branch distance range make this not as easy as

it sounds, this will need further investigation.

3.4. libgcc was miscompiled, so -eb8 swaps did not work at

link time

Very similar to the kernel loader issue, and also very

confusing, this issue came up early: late in the boot

process, fc-cache(1) is run to update the X font

cache. On the CubieTruck this program invocation

crashed, resulting in an error log from the rc scripts.

This was the first time erroneously swapped instruction

encodings came up and I did not have my homework

5
 sys/arch/arm/arm32/kobj_machdep.c, lines 210-394

6
 PR kern/49396: reproducable panic on puffs;

http://gnats.netbsd.org/49396

http://nxr.netbsd.org/xref/src/sys/arch/arm/arm32/kobj_machdep.c#348
http://gnats.netbsd.org/49396

(learning the details about BE8) done, so the original

bug report was fuzzy: PR 49337
7
.

Later analysis showed: the magic local symbols mark-

ing 32bit code sections (and thus instructing the linker

to swap for be8 mode) had been removed, resulting in

byte swapped code for all gcc intrinsic functions.

In a standard build, NetBSD does not use the gcc pro-

vided build infrastructure to build libgcc, instead all

“configury” is done upfront during a step called

“mknative”, and the resulting makefile fragments and

header files are then committed to the NetBSD tree.

This guarantees reproducible build results and allows

for easier cross builds. The Net-BSD makefiles driving

the final build of libgcc force visibility of all libgcc

symbols to be “hidden” and play some tricks that in-

volved a strip and ld –r step. Unfortunately strip does

like it is told – and strips all local symbols, including

the EABI reserved byte swapping markers $d, $a and

$t. The final link step creating libgcc_s.so later could

not identify the BE8 instructions, so did not swap any-

thing, resulting in reversed byte order instructions in the

shared library.

Once identified, a fix was simple: strip got replaced by

a slightly cleverer objcopy invocation, preserving the

special $-symbols.

3.5. "run" in gdb did not work

When automatic test runs result in failures, it is often

useful to run the test program inside gdb and set break-

points, so state can be examined before the failure hap-

pens. Unfortunately this did not work on BE8 ARM, as

reported in PR 49445
8
.

Now how do you debug gdb, if you cannot run gdb in

gdb? Even if you can run gdb in gdb it is a bit scary,

recursive and insane. Given the history so far of byte

swapping (or lack of) operations for BE8 code, it was

likely that this was another instance. Code reading in

gdb showed that newer ARM targets used two different

markers for endianness in their struct

gdbarch_info: byte_order for general operations

and byte_order_for_code for instructions. Howev-

er, the NetBSD specific code in armnbsd-tdep.c
9
 had

not been updated.

The code in question selects the encoding for break-

point instructions. Gdb automatically inserts a break-

7
 PR port-arm/49337: __popcountsi2() triggers illegal

instruction; http://gnats.netbsd.org/49337
8
 PR toolchain/49445: gdb can't "run" programs on BE8

arm; http://gnats.netbsd.org/49445
9
 external/gpl3/gdb/dist/gdb/armnbsd-tdep.c, line 45ff

point in the runtime linker, ld.elf_so, which gets hit

after loading any new shared library. Due to the wrong

endianness of the breakpoint encoding, the ld.elf_so

code was modified but the breakpoint not hit. The cor-

rect breakpoint encoding is an undefined instruction:

110000e6 ; <UNDEFINED> instruction:

 0xe6000011

but with reversed byte order it is a conditional signed

multiply:

e6000011 smlattne r0, r6, r0, r0

So instead of causing an invalid instruction trap, which

would have been trapped by gdb, the code modified

register r0 and continued to run into unrelated code -

since the “breakpoint” replaced a return instruction, as

that is the only instruction in _rtld_debug_state:

(gdb) x/3i _rtld_debug_state

 0x21e8 <_rtld_debug_state>: bx lr

 0x21ec <_rtld_objlist_clear>:

 mov r12, sp

 0x21f0 <_rtld_objlist_clear+4>:

 push {r3, r4, r11, r12, lr, pc}

The sole purpose of the _rtld_debug_state()10

function is to provide a hook for debuggers. But now

execution continued in _rtld_objlist_clear, with

bogus arguments.

Fixing the NetBSD gdb target code to use the new

byte_order_for_code field resolved this issue.

4. Other problems found

Not all issues hit were caused by byte order differences,

but just being different.

4.1. C++ exception unwinding did not work

When compiled with gcc (we offer clang/llvm as an

option on ARM), NetBSD uses a strange combination

of libstdc++ from gcc and the native libunwind (based

on LLVM runtime code).

The automatic testing framework (ATF) is written in

C++, and one of its internal tests cases reliably failed

with a segmentation violation during exception unwind-

ing, as reported in PR 49444
11

.

Exceptions are evil, and unwinding them is close to a

black art. The toolchain creating binaries produces

additional data, called CFI (call frame information)

10

 libexec/ld.elf_so/rtld.c, lines 1431ff
11

 PR lib/49444: c++ exception unwinding broken on

BE8 arm; http://gnats.netbsd.org/49444

http://gnats.netbsd.org/49337
http://gnats.netbsd.org/49445
http://nxr.netbsd.org/xref/src/external/gpl3/gdb/dist/gdb/armnbsd-tdep.c#45
http://nxr.netbsd.org/xref/src/libexec/ld.elf_so/rtld.c#1431
http://gnats.netbsd.org/49444

encoded in DWARF (the ELF debug information for-

mat) and stored in the .eh_frame section of the bina-

ry. To save space, parts of the data are compressed as

byte code for a special finite state machine.

To unwind an exception, the current PC is looked up in

the unwind info, and then instructions there are fol-

lowed how to get to the callers frame and the process is

repeated, frame by frame.

The objdump(1) utility can dump the DWARF data in

readable form, but the output looked wrong, especially

the PC ranges given have an offset which has not been

explained to me so far, maybe it is a bug in objcopy or

BFD, but at first sight it seemed to point at gcc creating

bogus unwind info. Comparing with very similar output

for the (working) little endian ARM case ruled this out.

There is another tool in the binutils collection,

readelf(1), which does not use the object format

agnostic libbfd, but is hardcoded for ELF. It can also

decode the CFI data, and displays it correctly – so gcc

was off the hook.

Adding annotations to the unwind library showed this

was a bug in a binary search, when the target PC was in

the last block of data, but not the first address of that

range. A slightly different overall memory mapping

triggered this, the little endian version was just lucky.

4.2. FPU exceptions missing

The cortex-7 CPUs do not implement FPU-exceptions,

so a few test programs had to be adjusted. The trick is

to test whether the FP_X_INV bit is sticky in the FPU

exception mask:

#elif defined(__arm__) && !__SOFTFP__

 /*

 * Some NEON fpus do not implement IEEE

 exception handling,

 * skip these tests if running on them

 and compiled for

 * hard float.

 */

 if (0 == fpsetmask(fpsetmask(FP_X_INV)))

 atf_tc_skip("FPU does not implement”

 “ exception handling");

#endif

This might look like a copy & paste error at quick

glance, but it is correct: the inner fpsetmask sets the

exception enable bit for invalid operations and returns

the previous mask. The outer fpsetmask restores the

previous mask and returns the FP_X_INV from the

inner call if the FPU implements it, or zero if not.

4.3. Unaligned access works

Similarly, ARM since version 6 does not require the

same strict alignment as older versions. To help user

land programs to query this property, a sysctl

(machdep.unaligned_sigbus) has been implemented and

is now used in tests for alignment exceptions.

The same sysctl already existed on the Alpha architec-

ture (where it even is user settable, so the behavior can

be changed at runtime and the kernel fixes access in

trap handlers). This is not possible on ARM, but adding

the sysctl value read-only made modifications of the

test code very simple:

#if defined(__alpha__) || defined(__arm__)

 int rv, val;

 size_t len = sizeof(val);

 rv = sysctlbyname(

 "machdep.unaligned_sigbus",

 &val, &len, NULL, 0);

 ATF_REQUIRE(rv == 0);

 if (val == 0)

 atf_tc_skip("No SIGBUS signal for”

 ” unaligned accesses");

#endif

The only necessary user land change here was modify-

ing the #if instruction to include ARM. The kernel side

implementation is trivial as well: the current CPU is

tested for supporting ARMv6 or ARMv7 instructions:

cpu_unaligned_sigbus =

 !CPU_IS_ARMV6_P() && !CPU_IS_ARMV7_P();

5. Conclusion

In retrospect the issues found and fixed were less than

expected. Most time was spent on typical problems

when bringing up new hardware. After basic testing

works, the automatic tests (via ATF) proved very valu-

able again, but some issues did not get noticed – so

there is further room for improvement.

Only small parts of pkgsrc (3rd party software) have

been tested so far, but with surprisingly few problems –

autoconfig (and alternatives) do a good job, few as-

sumptions are hardcoded nowadays.

The big test will follow: getting Firefox running in big

endian mode on arm. It uses lots of assembly code

(ARM is one of the best supported platforms) and has

JIT compilers, so this sure will be another fun project.

Compared to fifteen years ago when my other favorite

odd architecture (of course that is sparc64) became

popular in NetBSD and people started throwing third

party software from pkgsrc (and even X) at it, the

whole experience was extremely smooth and painless.

Maybe we all ARE improving, after all and software

gets better (or at least more portable).

The not endian related issues showing up are a sign that

diversity (especially in testing environments) always

pays. For example the libunwind bug would have been

extremely hard to track down if it had not (out of pure

luck) manifested itself in a simple automatic test case.

6. Acknowledgments

I would like to thank all the people who helped with the

CubieTruck, especially Matt Thomas, Nick Hudson,

and Jared McNeill. Also many thanks go to Jörg Son-

nenberger for fixing the nasty libunwind bug.

The NetBSD Foundation, Inc. funded my CubieTruck

board, which made this work possible.

Finally many thanks to the AsiaBSDCon program

committee and organizers for providing the conference

and accepting my talk.

7. References

[1] http://cubieboard.org/

[2] Log data from automatic test runs:

http://releng.netbsd.org/test-results.html

[3] CubieTruck test results page:

http://www.netbsd.org/~martin/evbearmv7hf-atf/

[4] ELF for the ARM® Architecture:

http://infocenter.arm.com/help/topic/com.arm.doc.

ihi0044e/IHI0044E_aaelf.pdf

[5] Martin Husemann, ARM multiprocessor support,

with CubieTruck images:

http://blog.netbsd.org/tnf/entry/working_arm_mult

iprocessor_support

[6] NetBSD/evbarm on Allwinner Technology SoCs:

http://wiki.netbsd.org/ports/evbarm/allwinner/

http://releng.netbsd.org/test-results.html
http://www.netbsd.org/~martin/evbearmv7hf-atf/
http://blog.netbsd.org/tnf/entry/working_arm_multiprocessor_support
http://blog.netbsd.org/tnf/entry/working_arm_multiprocessor_support
http://wiki.netbsd.org/ports/evbarm/allwinner/

