How to hold onto things in a multiprocessor world

Taylor ‘Riastradh’ Campbell
campbell@numble.net
riastradh@NetBSD.org

AsiaBSDcon 2017
Tokyo, Japan
March 12, 2017

Slides'n’code

> Full of code! Please browse at your own pace.
» Slides: https://tinyurl.com/ho2cdhq?
» Paper: https://tinyurl.com/h9kqccf?

Slides: Paper:

"https://wuw.NetBSD.org/gallery/presentations/riastradh/
asiabsdcon2017/mp-refs-slides.pdf

https://www.NetBSD.org/gallery/presentations/riastradh/
asiabsdcon2017/mp-refs-paper.pdf

https://tinyurl.com/ho2cdhq
https://tinyurl.com/h9kqccf
https://www.NetBSD.org/gallery/presentations/riastradh/asiabsdcon2017/mp-refs-slides.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/asiabsdcon2017/mp-refs-slides.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/asiabsdcon2017/mp-refs-paper.pdf
https://www.NetBSD.org/gallery/presentations/riastradh/asiabsdcon2017/mp-refs-paper.pdf

Resources

v

Network routes

May be tens of thousands in system.

Acquired and released by packet-processing path.

Same route may be used simultaneously by many flows.
Large legacy code base to update for parallelism.
Update must be incremental!

v

vV vy VvYyy

Device drivers

» Only a few dozen in system.
» Even wider range of legacy code to safely parallelize.

v

v

File system objects (‘vnodes’)

User credential sets

v

The life and times of a resource

» Birth:

» Create: allocate memory, initialize it.

» Publish: reveal to all threads.
> Life:

» Acquire: thread begins to use a resource.
Release: thread is done using a resource.
...rinse, repeat.

Concurrently by many threads at a time.

» Death:

» Delete: prevent threads from acquiring.
» Destroy: free memory. .. after all threads have released.

vV vy

Problems for an implementer

If you are building an API for some class of resources. . .

v

You MUST ensure nobody frees memory still in use!

v

You MUST satisfy other API contracts, e.g. mutex rules.

You MAY want to allow concurrent users of resources.

v

v

You MAY care about performance.

Serialize all resources — layout

struct foo {
int key;
.3
struct foo *next;

};

struct {
kmutex_t lock;
struct foo *first;
} footab;

Serialize all resources — create/publish

struct foo *f = alloc_foo(key);

mutex_enter (&footab.lock);
f->next = footab.first;
footab.first = f;
mutex_exit (&footab.lock);

Serialize all resources — lookup/use

struct foo *f;

mutex_enter (&footab.lock);
for (f = footab.first; f != NULL; f = f->next) {
if (f->key == key) {
...use f...
break;

}
mutex_exit (&footab.lock);

Serialize all resources — delete/destroy

Delete/destroy:

struct foo **fp, *f;

mutex_enter (&footab.lock) ;
for (fp = &footab.first; (f = *fp) != NULL; fp = &f->next) {
if (f->key == key) {
*fp = f->next;
break;
}

}
mutex_exit (&footab.lock);

if (£ '= NULL)
free_foo(f);

Serialize all resources — slow and broken!

» No parallelism.

» Not allowed to wait for 1/O or do long computation under
mutex lock.

» (This is a NetBSD rule to put bounds on progress for
mutex_enter, which is not interruptible.)

Mutex and reference counts — layout

(a) Add reference count to each object.

(b) Add condition variable for notifying f->refcnt ==

struct foo {

int key;
unsigned refcnt; // (a)
struct foo *next;
};
struct {
kmutex_t lock;
kcondvar_t cv; // (b)

struct foo *first;
} footab;

Mutex and reference counts — layout

footab
unowned | waiters first
struct foo
key: 1 refcnt: 3 next

—

key: 2 refcnt: 0 next

Mutex and reference counts — create/publish

struct foo *f = alloc_foo(key);
f->refcnt = 0;

mutex_enter (&footab.lock);
f->next = footab.first;
footab.first = £;
mutex_exit (&footab.lock);

Mutex and reference counts — lookup/acquire

struct foo *f;

mutex_enter (&footab.lock);
for (f = footab.first; f != NULL; f = f->next) {
if (f->key == key) {
f->refcnt++;
break;

}
mutex_exit (&footab.lock);
if (£ != NULL)

...use f...

Mutex and reference counts — release

mutex_enter (&footab.lock);

if (-——f->refcnt == 0)
cv_broadcast (&footab.cv) ;

mutex_exit (&footab.lock);

Mutex and reference counts — delete/destroy

struct foo *xfp, xf;

mutex_enter (&footab.lock);
for (fp = &footab.first; (f = *fp) != NULL; fp = &f->next) {
if (f->key == key) {
*fp = f->next;
while (f->refcnt != 0)
cv_wait (&footab.cv, &footab.lock);
break;
}
}
mutex_exit (&footab.lock);

if (f '= NULL)
free_foo(f);

Mutex lock and reference counts — summary

v

If this works for you, stop here!

v

Easy to prove correct.

v

Just go to another talk.

» ...but it does have problems:

v

Only one lookup at any time.

v

Contention over lock for every object.

» Hence not scalable to many CPUs.

Hashed locks

» Randomly partition resources into buckets.

» |f distribution on resource use is uniform, lower contention for
lookup!

Hashed locks — layout

struct {
struct foobucket {
kmutex_t lock;
kcondvar_t cv;
struct foo *xfirst;
} b;
char pad[roundup(
sizeof (struct foobucket),
CACHELINE_SIZE)];
} footab[NBUCKET];

Hashed locks — acquire

size_t h = hash(key);

mutex_enter (&footab[h] .b.lock);
for (f = footab[h].b.first; f != NULL; f = f->next) {
if (f->key == key) {
f->refcnt++;
break;

}
mutex_exit (&footabl[h].b.lock);

Hashed locks

v

Randomly partition resources into buckets.

If distribution on resource use is uniform, lower contention
for lookup!

v

v

What if many threads want to look up same object?

v

Still only one lookup at a time for that object.

v

Still contention for releasing resources after use.

Mutex lock and atomic reference counts

» Use atomic operations to manage most uses of a resource.

» No need to acquire global table lock to release a resource if
it's not the last one.

Mutex lock and atomic reference counts — acquire

struct foo *f;

mutex_enter (&footab.lock);
for (f = footab.first; f != NULL; f = f->next) {
if (f->key == key) {
atomic_inc_uint (&f->refcnt) ;
break;

}
mutex_exit (&footab.lock);
if (£ != NULL)

...use f...

Mutex lock and atomic reference counts — release

do {
old = f->refcnt;
if (old == 1) {
mutex_enter (&footab.lock) ;
if (f->refcnt == 1) {
f->refcnt = 0;
cv_broadcast (&footab.cv) ;
} else {
atomic_dec_uint (&f->refcnt) ;
}
mutex_exit (&footab.lock);
break;
}

} while (atomic_cas_uint(&f->refcnt, old, new) != old);

Atomics: still not scalable

» We avoid contention over global table lock to release.
» But if many threads want to use the same foo. ..
» Atomic operations are not a magic bullet!

> Single atomic is slightly faster and uses less memory than a
mutex lock enter/exit.

» But contended atomics are just as bad as contended locks!

Atomics: interprocessor synchronization®

anck: NI cnca crey | | PrE
Cache|| |Jcachd Cachel| |JCached

‘mgk;omect Inte N;o.vﬂy(

Memory

JptByeonpect Intepeonidg
@ache(’ achel Cachef ache
ceud| [cays Ceud| [lceud

3Diagram Copyright © 2005-2010, Paul E. McKenney. From
Paul E. McKenney, Is Parallel Programming Hard, And, If So, What Can You
Do About It?, 2011. https://www.kernel.org/pub/linux/kernel/people/
paulmck/perfbook/perfbook.2011.01.02a.pdf

https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2011.01.02a.pdf
https://www.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.2011.01.02a.pdf

Reader /writer locks for lookup

Instead of mutex lock for table, use rwlock.

v

v

At any time, either one writer or many readers.

v

Allows concurrent lookups, not just concurrent resource use.

v

If lookups are slow, great!

v

If lookups are fast, reader count is just another reference
count managed with atomics—contention!

Basic problem: to read, we must write!

v

All approaches here require readers to coordinate writes.

» Acquire table lock: write who owns it now.
» Acquire read lock: write how many readers.
» Acquire reference count: write how many users.

» Can we avoid writes to read?

v

Are there more reads than creations or destructions?

» Can we make reads cheaper, perhaps at the cost of making
creation or destruction more expensive?

No-contention references in NetBSD

» Passive serialization.
» Like read—copy—update, RCU in Linux.
» ...but US patent expired sooner!
» Passive references.
» Similar to hazard pointers.
» Similar to OpenBSD SRP.
» Local counts—per-CPU reference counts.
» Similar to sleepable RCU, SRCU, but simpler.

Coordinate publish and read

Linked-list insert and read can coordinate with no atomics.

v

> ...as long as they write and read in the correct order.
» One writer, any number of readers!

» Same principle for hash tables (‘hashed lists’), radix trees.

Publish

» Write data first.

» Then write pointer to it.

struct foo *f = alloc_foo(key);

mutex_enter (&footab.lock);
f->next = footab.first;
membar_producer () ;
footab.first = f;
mutex_exit (&footab.lock);

Publish 1: after writing data

head

data

next

next

Publish 2: after write barrier

head

data

next

data

next

data

next

Publish 3: after writing pointer

head data data next

data next

Read

v

Read pointer first.
Then read data from it.

v

» ... Yes, in principle stale data could be cached.

v

Fortunately, membar_datadep_consumer is a no-op on all
CPUs other than DEC Alpha.

for (f = footab.first; f != NULL; f = f->next) {
membar_datadep_consumer () ;
if (f->key == key) {
use (f);
break;

Read 1: after reading pointer

head data p

v AR
' garbage i garbage

Read 2: after read barrier

head

Read 3: after reading data

head

data

b

data

next

Delete

» Deletion is even easier!
» xfp = f->next;

» ...but there is a catch.

Delete 1: before delete

head

data

data

next

b

data

next

Delete 1: after delete

head data next data next

data next

The catch

v

All well and good for publish and use!

v

All well and good for delete!

v

But when can we destroy (free memory, etc.)?

v

No signal for when all users are done with a resource.

v

How to signal release without contention?

Passive serialization: pserialize(9)

» Lookup/use:
1. Acquire: Block interrupts on CPU.
2. Look up resource.
3. Useit.
4. Release: Restore and process queued interrupts on CPU.
5. (Cannot use resource any more after this point!)

» Delete/destroy:
1. Remove resource from list: *fp = f->next.
2. Send interprocessor interrupt to all CPUs.
3. Wait for it to return on all CPUs.
4. All users that could have seen this resource have exited.

Passive serialization

CPUA r read section .
[1 1
rdefer IPI v answer IPI
CPU B -
| unlink ’ Y
1 LA 7| A}
send IPI ! safe to destroy

CPuC read section _ ‘ answer Pl read section
L | L 1

time

Passive serialization — lookup/use

Acquire: Block interrupts with pserialize read_enter.
Lookup: Read pointer.

Memory barrier!

Use: Read data.

Release: Restore and process queued interrupts with
pserialize read exit.

oA b

s = pserialize_read_enter();
for (f = footab.first; f != NULL; f = f->next) {
membar_datadep_consumer () ;
if (£->key == key) {
use (f);
break;

3

pserialize_read_exit(s);

Passive serialization — delete/destroy

(a) Delete from list to prevent new users.
(b) Send IPI to wait for existing users to drain.

(c) Free memory.

mutex_enter (&footab.lock) ;
for (fp = &footab.first; (f = xfp) != NULL; f = f->next) {
if (f->key == key) {
/* (a) Prevent new users. */
*fp = f->next;
/* (b) Wait for old users. */
pserialize_perform(footab.psz);
}
}
mutex_exit (&footab.lock);

if (f !'= NULL)
/* (c) Destroy. */
free_foo(f);

Passive serialization — lists

v

sys/queue.h macros do not have correct memory barriers.
» So we provide PSLIST(9), like LIST in sys/queue.h.

Linked list with constant-time insert and delete. . .

v

> ...and correct memory barrier for insert and read.

Passive serialization — PSLIST(9)

struct foo { ... struct pslist_entry f_entry; ... };
struct { ... struct pslist_head head; ... } footab;

mutex_enter (&footab.lock) ;
PSLIST_WRITER_INSERT_HEAD (&footab.head, f, f_entry);
mutex_exit (&footab.lock);

s = pserialize_read_enter();
PSLIST_READER_FOREACH(f, &footab.head, struct foo,

f_entry) {
if (f->key == key) {
...use f...;
break;
}

3

pserialize_read_exit(s);

Passive serialization pros

» Zero contention!

» Serially fast readers!
» We use software interrupts, so cheap to block and restore.
» No hardware interrupt controller reconfiguration!

» Constant memory overhead—no memory per resource, per
CPU!

Passive serialization cons

> Interrupts must be blocked during read.

» Thread cannot sleep during read.

» What if we want to pserialize the network stack?

» Code was written in '80s before parallelism mattered. ..

» ...and does memory allocation in packet path (e.g., to
prepend a header in a tunnel). ..

» ...and simultaneously re-engineering the whole network stack
is hard!

» Can we do it incrementally with different tradeoffs?

Passive references: psref (9)

» Record per-CPU Iist of all resources in use.
» Lookup: use pserialize for table lookup.
» To acquire resource: put it on the list.

» Can now do anything on the CPU—sleep, eat, watch
television. . .

» To release resource: remove it from the list.

» To wait for users: send IPI| to check for resource on each
CPU'’s list.

» Note: Reader threads must not switch CPUs!

Passive references — create/publish

struct foo { ... struct psref_target target; ... };
struct { ... struct psref_class *psr; ... } footab;

struct foo *f = alloc_foo(key);
psref_target_init (&f->target, footab.psr);
mutex_enter (&footab.lock);

PSLIST_WRITER_INSERT_HEAD(&footab.head, f_entry, f);
mutex_exit (&footab.lock);

Passive references — lookup/acquire

psref_acquire inserts entry on CPU-local list: no atomics!

struct psref fref;
int bound, s;

/* Bind to current CPU and lookup. */
bound = curlwp_bind();
s = pserialize_read_enter();
PSLIST_READER_FOREACH(f, &footab.head, struct foo,
f_entry) {
if (f->key == key) {
psref_acquire (&fref, &f->target,
footab.psr);
break;

}

pserialize_read_exit(s);

Passive references — release

> psref_remove removes entry on CPU-local list, and notifies
destroyer if there is one.

» No atomics unless another thread is waiting to destroy the
resource.

/* Release psref and unbind from CPU. */

psref_release(&fref, &f->target, footab.psr);
curlwp_bindx(bound) ;

Passive references — delete/destroy

> psref_target_destroy marks the resource as being
destroyed.

» Thus, future psref_release will wake it.

» Then psref_target_destroy repeatedly checks for
references on all CPUs and sleeps until there are none left.

Passive references — delete/destroy

/* (a) Prevent new users. */

mutex_enter (&footab.lock) ;

PSLIST_WRITER_FOREACH(f, &footab.head, struct foo,

f_entry) {
if (f->key == key) {

PSLIST_WRITER_REMOVE(f, f_entry);
pserialize_perform(footab.psz);
break;

}

mutex_exit (&footab.lock);

if (f != NULL) {
/* (b) Wait for old users. */
psref_target_destroy(&f->target, footab.psr);
/* (c) Destroy. */
free_foo(f);

Passive references — notes

» Threads can sleep while holding passive references.
» Binding to CPU is not usually a problem.
» Much of network stack already runs bound to a CPU anyway!
» Bonus: can write precise asserts for diagnostics!
KASSERT (psref_held(&f->target, footab.psr));

» Modest memory cost:
O(#CPU) + O(#resource) + O(#references).

» Network routes: tens of thousands in system.

» Network routes: a handful per CPU at any time.

Local counts: localcount(9)

> Global reference count per resource = contention.

» What about a per-CPU reference count per resource?

» High memory cost: O(#CPU X #resource).

» So use only for small numbers of resources, like device drivers.
» Device drivers: dozens in system.

» Device drivers: maybe thousands of uses at any time during
heavy 1/0O loads.

Local counts — create/publish

struct foo { ... struct localcount lc; ... };
struct foo *f = alloc_foo(key);
localcount_init (&f->1c);

mutex_enter (&footab.lock);

PSLIST_WRITER_INSERT_HEAD (&footab.head, f_entry, f);
mutex_exit (&footab.lock);

Local counts — lookup/acquire

localcount_acquire increments a CPU-local counter—no
atomics!

s = pserialize_read_enter();
PSLIST_READER_FOREACH(f, &footab.head, struct foo,
f_entry) {
if (£f->key == key) {
localcount_acquire(&f->1c);
break;

}

pserialize_read_exit(s);

Local counts — release

» localcount_release increments a CPU-local counter.

> If there is a destroyer, updates destroyer’s global reference
count.

» No atomics unless another thread is waiting to destroy the
resource.

localcount_release(&f->1c);

Local counts — delete/destroy

> localcount_destroy marks resource as being destroyed.

» Sends IPI to compute global reference count by adding up
each CPU'’s local reference count.

» (Fun fact: local reference counts can be negative, if threads
have migrated!)

» Waits for all IPIs to return and reference count to become
zero.

Local counts — delete/destroy

/* (a) Prevent new users. */

mutex_enter (&footab.lock) ;

PSLIST_WRITER_FOREACH(f, &footab.head, struct foo,

f_entry) {
if (f->key == key) {

PSLIST_WRITER_REMOVE(f, f_entry);
pserialize_perform(footab.psz);
break;

}

mutex_exit (&footab.lock);

if (f != NULL) {
/* (b) Wait for old users. */
localcount_destroy(&f->1c);
/* (c) Destroy. */
free_foo(f);

Local counts — notes

> Not yet integrated in NetBSD—still on an experimental
branch!

» To be used for MP-safely unloading device driver modules.

» Other applications? Probably yes!

Summary

v

Avoid locks! Locks don't scale.

v

Avoid atomics! Atomics don't scale.

v

pserialize: short uninterruptible reads, fast but limited.

v

psref: sleepable readers, modest time/memory cost, flexible.

v

localcount: migratable readers, fast but memory-intensive.

Questions?

riastradh@NetBSD.org

