

NetBSD Internals
(2011/07/21)


The NetBSD Developers







NetBSD Internals


by The NetBSD Developers


Published 2011/07/21 17:27:57


Copyright © 2006, 2007, 2008, 2009, 2010 The NetBSD Foundation


All brand and product names used in this guide are or may be trademarks or registered trademarks of their respective owners.


NetBSD® is a registered trademark of The NetBSD Foundation, Inc.







Table of Contents
Purpose of this book .............................................................................................................................. viii


1 Memory management.............................................................................................................................1


1.1 The UVM virtual memory manager.............................................................................................1


1.1.1 UVM objects ...................................................................................................................1


1.2 Managing wired memory .............................................................................................................2


1.2.1 Malloc types ....................................................................................................................2


2 File system internals ...............................................................................................................................3


2.1 Structural overview ......................................................................................................................3


2.2 vnode interface overview .............................................................................................................3


2.2.1 The vnode data field ........................................................................................................4


2.2.2 vnode operations..............................................................................................................4


2.2.3 The vnode operations vector............................................................................................6


2.2.4 Executing vnode operations.............................................................................................7


2.3 VFS interface overview................................................................................................................8


2.3.1 The mount structure.........................................................................................................8


2.3.2 VFS operations ................................................................................................................8


2.3.3 The VFS operations structure..........................................................................................9


2.4 File systems overview................................................................................................................11


2.4.1 On-disk file systems ......................................................................................................11


2.4.2 Network file systems .....................................................................................................11


2.4.3 Synthetic file systems ....................................................................................................11


2.4.4 Layered file systems ......................................................................................................11


2.4.5 Helper file systems ........................................................................................................11


2.5 Initialization and cleanup ...........................................................................................................12


2.6 Mounting and unmounting.........................................................................................................13


2.6.1 Mount call arguments ....................................................................................................13


2.6.2 The mount utility ...........................................................................................................13


2.6.3 The fs_mount operation.................................................................................................14


2.6.3.1 Retrieving mount parameters............................................................................14


2.6.3.2 Getting the arguments structure ........................................................................15


2.6.3.3 Updating mount parameters..............................................................................15


2.6.3.4 Setting up a new mount point ...........................................................................15


2.6.4 The vfs_unmount function ............................................................................................16


2.7 File system statistics...................................................................................................................17


2.8 vnode management ....................................................................................................................17


2.8.1 vnode’s life cycle...........................................................................................................17


2.8.2 vnode tags......................................................................................................................18


2.8.3 Allocation of a vnode ....................................................................................................18


2.8.4 Deallocation of a vnode.................................................................................................19


2.8.5 vnode’s locking protocol ...............................................................................................20


2.9 The root vnode ...........................................................................................................................20


2.10 Path name resolution procedure...............................................................................................21


2.10.1 Path name components................................................................................................21


2.10.2 The lookup algorithm ..................................................................................................21


2.10.3 Lookup hints................................................................................................................22


iii







2.11 File management ......................................................................................................................23


2.11.1 Creation of regular files ...............................................................................................23


2.11.2 Creation of hard links ..................................................................................................23


2.11.3 Removal of a file..........................................................................................................23


2.11.4 Rename of a file...........................................................................................................23


2.11.5 Reading and writing ....................................................................................................23


2.11.5.1 uio objects .......................................................................................................23


2.11.5.2 Getting and putting pages ...............................................................................24


2.11.5.3 Memory-mapping a file...................................................................................25


2.11.5.4 The read and write operations.........................................................................25


2.11.5.5 Reading and writing pages..............................................................................26


2.11.6 Attributes management................................................................................................26


2.11.6.1 Getting file attributes.......................................................................................27


2.11.6.2 Setting file attributes .......................................................................................28


2.11.7 Time management .......................................................................................................29


2.11.8 Access control .............................................................................................................29


2.12 Symbolic link management......................................................................................................30


2.12.1 Creation of symbolic links...........................................................................................30


2.12.2 Read of symbolic link’s contents.................................................................................30


2.13 Directory management.............................................................................................................30


2.13.1 Creation of directories .................................................................................................30


2.13.2 Removal of directories.................................................................................................30


2.13.3 Reading directories......................................................................................................31


2.14 Special nodes............................................................................................................................32


2.15 NFS support .............................................................................................................................33


2.16 Step by step file system writing ...............................................................................................33


3 Processes and threads...........................................................................................................................44


3.1 Process startup............................................................................................................................44


3.1.1 execve usage ................................................................................................................44


3.1.2 Overview of in-kernel execve code path .....................................................................44


3.1.3 Multiple executable format support with the exec switch .............................................46


3.1.3.1 Executable format probe...................................................................................47


3.1.3.2 Virtual memory space setup commands (vmcmds) ..........................................47


3.1.3.3 Stack virtual memory space setup.....................................................................48


3.1.3.4 Initial register setup...........................................................................................48


3.1.3.5 Return to userland.............................................................................................48


3.2 Traps and system calls................................................................................................................48


3.2.1 Traps ..............................................................................................................................49


3.2.2 Multiple kernel ABI support with the emul switch .......................................................49


3.2.3 The syscalls.master table ...............................................................................................49


3.2.4 System call implementation in libc ...............................................................................51


3.2.5 How to add a new system call .......................................................................................51


3.2.6 Versioning a system call ................................................................................................52


3.2.7 Committing changes to syscall tables............................................................................54


3.2.8 Managing 32 bit system calls on 64 bit systems ...........................................................54


3.3 Processes and threads creation...................................................................................................55


3.3.1 fork, clone, and pthread_create usage.................................................................55


iv







3.3.2 Overview of fork code path .........................................................................................55


3.3.3 Overview of pthread_create code path ...................................................................55


3.4 Processes and threads termination .............................................................................................55


3.4.1 exit, and pthread_exit usage..................................................................................55


3.4.2 Overview of exit code path .........................................................................................55


3.4.3 Overview of pthread_exit code path........................................................................55


3.5 Signal delivery............................................................................................................................55


3.5.1 Deciding what to do with a signal .................................................................................55


3.5.2 The sendsig function ..................................................................................................55


3.5.3 Cleaning up state after signal handler execution...........................................................56


3.6 Thread scheduling ......................................................................................................................56


3.6.1 Overview .......................................................................................................................56


3.6.1.1 The 4.4BSD Scheduler......................................................................................58


3.6.1.2 The M2 scheduler .............................................................................................58


3.6.2 References .....................................................................................................................58


4 Networking ............................................................................................................................................59


4.1 Routing.......................................................................................................................................59


4.1.1 Network Routing DB Backend......................................................................................60


4.1.2 Routing Interface ...........................................................................................................61


4.1.3 Routing Sockets.............................................................................................................62


4.2 Sockets .......................................................................................................................................63


4.2.1 Socket Data Structure ....................................................................................................63


4.2.2 Socket Buffers ...............................................................................................................64


4.2.3 Socket Creation .............................................................................................................65


4.2.4 Socket Operation ...........................................................................................................66


4.2.5 Socket Destruction.........................................................................................................66


4.2.6 Protocol Support............................................................................................................66


4.3 mbufs..........................................................................................................................................67


4.4 IP layer .......................................................................................................................................67


4.5 UDP............................................................................................................................................67


4.6 TCP ............................................................................................................................................67


5 Networking Services .............................................................................................................................68


5.1 IEEE 802.11...............................................................................................................................68


5.1.1 Device Management......................................................................................................68


5.1.2 Nodes.............................................................................................................................69


5.1.3 Crypto Support ..............................................................................................................69


5.2 IPSec ..........................................................................................................................................69


5.3 Networking pseudo-devices.......................................................................................................69


5.3.1 Cloning devices .............................................................................................................70


5.3.2 Pseudo Interface Operation ...........................................................................................71


5.4 Packet Filters ..............................................................................................................................72


5.4.1 Packet Filter Interface....................................................................................................72


5.4.2 NPF................................................................................................................................72


5.4.3 Berkeley Packet Filter....................................................................................................72


A. Acknowledgments ...............................................................................................................................74


A.1 Authors......................................................................................................................................74


A.2 License ......................................................................................................................................74


v







B. Bibliography ........................................................................................................................................76


Bibliography.....................................................................................................................................76


vi







List of Tables
2-1. vnode operations summary...................................................................................................................4


2-2. VFS operations summary .....................................................................................................................8


3-1. struct execsw fields summary.............................................................................................................46


3-2. vmcmd methods .................................................................................................................................47


3-3. Files produced from syscalls.master ..........................................................................................49


3-4. Scheduling priorities...........................................................................................................................57


4-1. struct radix_node_head interfaces ......................................................................................................60


4-2. struct rtentry members........................................................................................................................61


4-3. struct socket members ........................................................................................................................63


4-4. struct sockbuf members......................................................................................................................65


5-1. Available networking pseudo-devices................................................................................................69


vii







Purpose of this book


This book describes the NetBSD Operating System internals. The main idea behind it is to provide solid


documentation for contributors that wish to develop extensions for NetBSD or want to improve its


existing code. Ideally, there should be no need to reverse-engineer the system’s code in order to


understand how something works.


A lot of work is still required to finish this book: some chapters are not finished and some are not even


started. Those parts that are planned but which are still pending to do are already part of the book but are


clearly marked as incomplete by using a XXX marker.


This book is currently maintained by the NetBSD www team (<www@NetBSD.org>). Corrections,


suggestions and extensions should be sent to that address.


viii







Chapter 1


Memory management


XXX: This chapter is extremely incomplete. It currently contains supporting documentation for


Chapter 2 but nothing else.


1.1 The UVM virtual memory manager


UVM is the NetBSD’s virtual memory manager.


1.1.1 UVM objects


An UVM object — or also known as uobj — is a contiguous region of virtual memory backed by a


specific system facility. This can be a file (vnode), XXX What else?.


In order to understand what "to be backed by" means, here is a review of some basic concepts of virtual


memory management. In a system with virtual memory support, the system can manage an address space


bigger than the physical amount of memory available to it. The address space is broken into chunks of


fixed size, namely pages, as is the physical memory, which is divided into page frames.


When the system needs to access a memory address, it can either find the page it belongs to (page hit) or


not (page fault). In the former case, the page is already stored in main memory so its data can be directly


accessed. In the latter case, the page is not present in main memory.


When a page fault occurs, the processor’s memory management unit (MMU) signals the kernel through


an exception and asks it to handle the fault: this can either result in a resolved page fault or in an error.


Assuming that all memory accesses are correct (and hence there are no errors), the kernel needs to bring


the requested page into memory. But where is the requested page? Is it in the swap space? In a file?


Should it be filled with zeros?


Here is where the backing mechanism enters the game. A backing object defines where the pages should


be read from and where shall them be stored after modifications, if any. Talking about implementation,


reading a page from the backing object is preformed by a getpages function while writing to it is done by


a putpages one.


Example: consider a 32-bit address space, a page size of 4096 bytes and an uobj of 40960 bytes (10


pages) starting at the virtual address 0x00010000; this uobj’s backing object is a vnode that represents a


text file in your file system. Assume that the file has not been read at all yet, so none of its pages are in


main memory. Now, the user requests a read from offset 5000 and with a length of 4000. This offset falls


into the uobj’s second page and the ending address (9000) falls into the third page. The kernel converts


these logical offsets into memory addresses (0x00011388 and 0x00012328) and reads all the data


contained in between. So what happens? The MMU causes two page faults and the vnode’s getpages


method is called for each of them, which then reads the pages from the corresponding file, puts them into


main memory and returns control to the caller. At this point, the read has been served.


1







Chapter 1 Memory management


Similarly, pages can be modified in memory after they have been brought to it; at some point, these


changes will need to be flushed to the backing store, which happens with the backing object’s putpages


operation. There are multiple reasons for the flush, including the need to reclaim the least recently used


page frame from main memory, explicitly synchronizing the uobj with its backing store (think about


synchronizing a file system), closing a file, etc.


1.2 Managing wired memory


The malloc(9) and free(9) functions provided by the NetBSD kernel are very similar to their userland


counterparts. They are used to allocate and release wired memory, respectively.


1.2.1 Malloc types


Malloc types are used to group different allocation blocks into logical clusters so that the kernel can


manage them in a more efficient manner.


A malloc type can be defined in a static or dynamic fashion. Types are defined statically when they are


embedded in a piece of code that is linked together the kernel during build time; if they are part of a


standalone module, they are defined dynamically.


For static declarations, the MALLOC_DEFINE(9) macro is provided, which is then used somewhere in


the global scope of a source file. It has the following signature:


MALLOC_DEFINE(struct malloc_type *type, const char *short_desc, const char


*long_desc);


The first parameter takes the name of the malloc type to be defined; do not let the type shown above


confuse you, because it is an internal detail you ought not know. Malloc types are often named in


uppercase, prefixed by M_. Some examples include M_TEMP for temporary data, M_SOFTINTR for


soft-interrupt structures, etc.


The second and third parameters are a character string describing the type; the former is a short


description while the later provides a longer one.


For a dynamic declaration, you must first define the type as static within the source file. Later on, the


malloc_type_attach(9) and malloc_type_detach(9) functions are used to notify the kernel about the


presence or removal of the type; this is usually done in the module’s initialization and finalization


routines, respectively.


2







Chapter 2


File system internals


This chapter describes in great detail the concepts behind file system development under NetBSD. It


presents some code examples under the name of egfs, a fictitious file system that stands for example file


system.


Throughout this chapter, the word file is used to refer to any kind of object that may exist in a file system;


this includes directories, regular files, symbolic links, special devices and named pipes. If there is a need


to mention a file that stores data, the term regular file will be used explicitly.


Understanding a complex body of code like the storage subsystem can be difficult. This chapter begins


with a structural overview, explaining how specific file systems and the virtual file system (VFS) code


interact. It continues with a description of both the vnode interface (the interface to files; Section 2.2) and


the VFS interface (the interface to whole file systems; Section 2.3) and then summarizes the existing file


systems. These sections should be read in order; they provide a general outline for the whole storage


subsystem and a foundation for reading and understanding existing code.


The subsequent sections of this chapter dig into specific issues and constructs in detail. These sections


may be read in any order, and are heavily cross-linked to one another to ease navigation. These later


sections should be considered a reference guide rather than an introduction.


At the very end there is a section that summarizes, based on ready-to-copy-and-paste code examples,


how to write a file system driver from scratch. Note that this section does not contain explanations per se


but only links to the appropriate sections where each point is described.


2.1 Structural overview


The storage subsystem is divided into four basic parts. First and highest level is the VFS-level code, file


system independent code that performs common functions on behalf of the rest of the kernel. This


portion sits on top of the second part, the individual file systems. The third part, common or generic


implementations of file system level logic, sits at the same conceptual level as file systems themselves


but is file system independent and shared rather than being part of a single file system. The fourth part is


lower level support code that file systems call into. This code is also file system independent. (A fifth


portion, device drivers for storage buses and hardware, is not discussed in this chapter.)


The interface between the VFS-level code and the file systems is very clearly defined. It is made up of


two parts, the vnode interface and the VFS interface, described in more detail in the next two sections.


The other interfaces are much less clear, as is the upper interface that the VFS-level code provides to the


system call layer and the rest of the kernel. Work is ongoing to clarify these interfaces.


Confusingly, the VFS-level code, the combination of the VFS and vnode interfaces, and the VFS


interface alone are all sometimes referred to as "the VFS layer".


3







Chapter 2 File system internals


2.2 vnode interface overview


A vnode is an abstract representation of an active file within the NetBSD kernel; it provides a generic


way to operate on the real file it represents regardless of the file system it lives on. Thanks to this


abstraction layer, all kernel subsystems only deal with vnodes. It is important to note that there is a


unique vnode for each active file.


A vnode is described by the struct vnode structure; its definition can be found in the


src/sys/sys/vnode.h file and information about its fields is available in the vnode(9) manual page.


The following analyzes the most important ideas related to this structure.


As the rule says, abstract representations must be specialized before they can be instantiated. vnodes are


not an exception: each file system extends both the static and dynamic parts of an vnode as follows:


• The static part — the data fields that represent the object — is extended by attaching a custom data


structure to an vnode instance during its creation. This is done through the v_data field as described


in Section 2.2.1.


• The dynamic part — the operations applicable to the object — is extended by attaching a vnode


operations vector to a vnode instance during its creation. This is done through the v_op field as


described in Section 2.2.3.


2.2.1 The vnode data field


The v_data field in the struct vnode type is a pointer to an external data structure used to represent a file


within a concrete file system. This field must be initialized after allocating a new vnode and must be set


to NULL before releasing it (see Section 2.8.4).


This external data structure contains any additional information to describe a specific file inside a file


system. In an on-disk file system, this might include the file’s initial cluster, its creation time, its size, etc.


As an example, the NetBSD’s Fast File System (FFS) uses the in-core memory representation of an


inode as the vnode’s data field.


2.2.2 vnode operations


A vnode operation is implemented by a function that follows the following contract: return an integer


describing the operation’s exit status and take a single void * parameter that carries a structure with the


real operation’s arguments.


Using an external structure to describe the operation’s arguments instead of using a regular argument list


has a reason: some file systems extend the vnode with additional, non-standard operations; having a


common prototype makes this possible.


The following table summarizes the standard vnode operations. Keep in mind, though, that each file


system is free to extend this set as it wishes. Also note that the operation’s name is shown in the table as


the macro used to call it (see Section 2.2.4).


Table 2-1. vnode operations summary


Operation Description See also


4







Chapter 2 File system internals


Operation Description See also


VOP_LOOKUP Performs a path name lookup. See Section 2.10.


VOP_CREATE Creates a new file. See Section 2.11.1.


VOP_MKNOD Creates a new special file (a


device or a named pipe).


See Section 2.14.


VOP_LINK Creates a new hard link for a file. See Section 2.11.2.


VOP_RENAME Renames a file. See Section 2.11.4.


VOP_REMOVE Removes a file. See Section 2.11.3.


VOP_OPEN Opens a file.


VOP_CLOSE Closes a file.


VOP_ACCESS Checks access permissions on a


file.


See Section 2.11.8.


VOP_GETATTR Gets a file’s attributes. See Section 2.11.6.1.


VOP_SETATTR Sets a file’s attributes. See Section 2.11.6.2.


VOP_READ Reads a chunk of data from a


file.


See Section 2.11.5.4.


VOP_WRITE Writes a chunk of data to a file. See Section 2.11.5.4.


VOP_IOCTL Performs an ioctl(2) on a file.


VOP_FCNTL Performs a fcntl(2) on a file.


VOP_POLL Performs a poll(2) on a file.


VOP_KQFILTER XXX


VOP_REVOKE Revoke access to a vnode and all


aliases.


VOP_MMAP Maps a file on a memory region. See Section 2.11.5.3.


VOP_FSYNC Synchronizes the file with


on-disk contents.


VOP_SEEK Test and inform file system of


seek


VOP_MKDIR Creates a new directory. See Section 2.13.1.


VOP_RMDIR Removes a directory. See Section 2.13.2.


VOP_READDIR Reads directory entries from a


directory.


See Section 2.13.3.


VOP_SYMLINK Creates a new symbolic link for a


file.


See Section 2.12.1.


VOP_READLINK Reads the contents of a symbolic


link.


See Section 2.12.2.


VOP_TRUNCATE Truncates a file. See Section 2.11.6.2.


VOP_UPDATE Updates a file’s times. See Section 2.11.7.


VOP_ABORTOP Aborts an in-progress operation.


VOP_INACTIVE Marks the vnode as inactive. See Section 2.8.1.


VOP_RECLAIM Reclaims the vnode. See Section 2.8.1.


5







Chapter 2 File system internals


Operation Description See also


VOP_LOCK Locks the vnode. See Section 2.8.5.


VOP_UNLOCK Unlocks the vnode. See Section 2.8.5.


VOP_ISLOCKED Checks whether the vnode is


locked or not.


See Section 2.8.5.


VOP_BMAP Maps a logical block number to a


physical block number.


See Section 2.11.5.5.


VOP_STRATEGY Performs a file transfer between


the file system’s backing store


and memory.


See Section 2.11.5.5.


VOP_PATHCONF Returns pathconf(2) information.


VOP_ADVLOCK XXX


VOP_BWRITE Writes a system buffer.


VOP_GETPAGES Reads memory pages from the


file.


See Section 2.11.5.2.


VOP_PUTPAGES Writes memory pages to the file. See Section 2.11.5.2.


2.2.3 The vnode operations vector


The v_op field in the struct vnode type is a pointer to the vnode operations vector, which maps logical


operations to real functions (as seen in Section 2.2.2). This vector is file system specific as the actions


taken by each operation depend heavily on the file system where the file resides (consider reading a file,


setting its attributes, etc.).


As an example, consider the following snippet; it defines the open operation and retrieves two


parameters from its arguments structure:


int


egfs_open(void *v)


{


struct vnode *vp = ((struct vop_open_args *)v)->a_vp;


int mode = ((struct vop_open_args *)v)->a_mode;


...


}


The whole set of vnode operations defined by the file system is added to a vector of struct


vnodeopv_entry_desc-type entries, with each entry being the description of a single operation. The


purpose of this vector is to define a mapping from logical operations such as vop_open or vop_read to


real functions such as egfs_open, egfs_read. It is not directly used by the system under normal


operation. This vector is not tied to a specific layout: it only lists operations available in the file system it


describes, in any order it wishes. It can even list non-standard (and unknown) operations as well as lack


some of the most basic ones. (The reason is, again, extensibility by third parties.)


There are two minor restrictions, though:


6







Chapter 2 File system internals


• The first item always points to an operation used in case a non-existent one is called. For example, if


the file system does not implement the vop_bmap operation but some code calls it, the call will be


redirected to this default-catch function. As such, it is often used to provide a generic error routine but


it is also useful in different scenarios. E.g., layered file systems use it to pass the call down the stack.


It is important to note that there are two standard error routines available that implement this


functionality: vn_default_error and genfs_eopnotsupp. The latter correctly cleans up vnode


references and locks while the former is the traditional error case one. New code should only use the


former.


• The last item always is a pair of null pointers.


Consider the following vector as an example:


const struct vnodeopv_entry_desc egfs_vnodeop_entries[] = {


{ vop_default_desc, vn_default_error },


{ vop_open_desc, egfs_open },


{ vop_read_desc, egfs_read },


... more operations here ...


{ NULL, NULL }


};


As stated above, this vector is not directly used by the system; in fact, it only serves to construct a


secondary vector that follows strict ordering rules. This secondary vector is automatically generated by


the kernel during file system initialization, so the code only needs to instruct it to do the conversion.


This secondary vector is defined as a pointer to an array of function pointers of type int (**vops)(void *).


To tell the kernel where this vector is, a mapping between the two vectors is established through a third


vector of struct vnodeopv_desc-type items. This is easier to understand with an example:


int (**egfs_vnodeop_p)(void *);


const struct vnodeopv_desc egfs_vnodeop_opv_desc =


{ &egfs_vnodeop_p, egfs_vnodeop_entries };


Out of the file-system’s scope, users of the vnode layer will only deal with the egfs_vnodeop_p and


egfs_vnodeop_opv_desc vectors.


2.2.4 Executing vnode operations


All vnode operations are subject to a very strict locking protocol among several other call and return


contracts. Furthermore, their prototype makes their call rather complex (remember that they receive a


structure with the real arguments). These are some of the reasons why they cannot be called directly


(with a few exceptions that will not be discussed here).


The NetBSD kernel provides a set of macros and functions that make the execution of vnode operations


trivial; please note that they are the standard call procedure. These macros are named after the operation


they refer to, all in uppercase, prefixed by the VOP_string. Then, they take the list of arguments that will


be passed to them.


For example, consider the following implementation for the access operation:


int


egfs_access(void *v)


7







Chapter 2 File system internals


{


struct vnode *vp = ((struct vop_access_args *)v)->a_vp;


int mode = ((struct vop_access_args *)v)->a_mode;


struct ucred *cred = ((struct vop_access_args *)v)->a_cred;


struct proc *p = ((struct vop_access_args *)v)->a_p;


...


}


A call to the previous method could look like this:


result = VOP_ACCESS(vp, mode, cred, p);


For more information, see the vnodeops(9) manual page, which describes all the mappings between


vnode operations and their corresponding macros.


2.3 VFS interface overview


The kernel’s Virtual File System (VFS) subsystem provides access to all available file systems in an


abstract fashion, just as vnodes do with active files. Each file system is described by a list of well-defined


operations that can be applied to it together with a data structure that keeps its status.


2.3.1 The mount structure


File systems are attached to the virtual directory tree by means of mount points. A mount point is a


redirection from a specific directory1 to a different file system’s root directory and is represented by the


generic struct mount type, which is defined in src/sys/sys/mount.h.


A file system extends the static part of a struct mount object by attaching a custom data structure to its


mnt_data field. As with vnodes, this happens when allocating the structure.


The kind of information that a file system stores in its mount structure heavily depends on its


implementation. Generally, it will typically include a pointer (either physical or logical) to the file


system’s root node, used as the starting point for further accesses. It may also include several accounting


variables as well as other information whose context is the whole file system attached to a mount point.


2.3.2 VFS operations


A file system driver exposes a well-known interface to the kernel by means of a set of public operations.


The following table summarizes them all; note that they are sorted according to the order that they take


in the VFS operations vector (see Section 2.3.3).


Table 2-2. VFS operations summary


Operation Description Considerations See also


fs_mount Mounts a new instance


of the file system.


Must be defined. See Section 2.6.


8







Chapter 2 File system internals


Operation Description Considerations See also


fs_start Makes the file system


operational.


Must be defined.


fs_unmount Unmounts an instance


of the file system.


Must be defined. See Section 2.6.


fs_root Gets the file system root


vnode.


Must be defined. See Section 2.9.


fs_quotactl Queries or modifies


space quotas.


Must be defined.


fs_statvfs Gets file system


statistics.


Must be defined. See Section 2.7.


fs_sync Flushes file system


buffers.


Must be defined.


fs_vget Gets a vnode from a file


identifier.


Must be defined. See Section 2.8.3.


fs_fhtovp Converts a NFS file


handle to a vnode.


Must be defined. See Section 2.15.


fs_vptofh Converts a vnode to a


NFS file handle.


Must be defined. See Section 2.15.


fs_init Initializes the file


system driver.


Must be defined. See Section 2.5.


fs_reinit Reinitializes the file


system driver.


May be undefined (i.e.,


null).


See Section 2.5.


fs_done Finalizes the file system


driver.


Must be defined. See Section 2.5.


fs_mountroot Mounts an instance of


the file system as the


root file system.


May be undefined (i.e.,


null).


fs_extattrctl Controls extended


attributes.


The generic


vfs_stdextattrctl


function is provided as a


simple hook for file


systems that do not


support this operation.


The list of VFS operations may eventually change. When that happens, the kernel version number is


bumped.


2.3.3 The VFS operations structure


Regardless of mount points, a file system provides a struct vfsops structure as defined in


src/sys/sys/mount.h that describes itself type is. Basically, it contains:


• A public identifier, usually named after the file system’s name suffixed by the fs string. As this


9







Chapter 2 File system internals


identifier is used in multiple places — and specially both in kernel space and in userland —, it is


typically defined as a macro in src/sys/sys/mount.h. For example: #define MOUNT_EGFS


"egfs".


• A set of function pointers to file system operations. As opposed to vnode operations, VFS ones have


different prototypes because the set of possible VFS operations is well known and cannot be extended


by third party file systems. Please see Section 2.3.2 for more details on the exact contents of this


vector.


• A pointer to a null-terminated vector of struct vnodeopv_desc * const items. These objects are listed


here because, as stated in Section 2.2.3, the system uses them to construct the real vnode operations


vectors upon file system startup.


It is interesting to note that this field may contain more than one pointer. Some file systems may


provide more than a single set of vnode operations; e.g., a vector for the normal operations, another


one for operations related to named pipes and another one for operations that act on special devices.


See the FFS code for an example of this and Section 2.14 for details on these special vectors.


Consider the following code snipped that illustrates the previous items:


const struct vnodeopv_desc * const egfs_vnodeopv_descs[] = {


&egfs_vnodeop_opv_desc,


... more pointers may appear here ...


NULL


};


struct vfsops egfs_vfsops = {


MOUNT_EGFS,


egfs_mount,


egfs_start,


egfs_unmount,


egfs_root,


egfs_quotactl,


egfs_statvfs,


egfs_sync,


egfs_vget,


egfs_fhtovp,


egfs_vptofh,


egfs_init,


NULL, /* fs_reinit: optional */


egfs_done,


NULL, /* fs_mountroot: optional */


vfs_stdextattrctl,


egfs_vnodeopv_descs


};


The kernel needs to know where each instance of this structure is located in order to keep track of the live


file systems. For file systems built inside the kernel’s core, the VFS_ATTACH macro adds the given VFS


operations structure to the appropriate link set. See GNU ld’s info manual for more details on this feature.


VFS_ATTACH(egfs_vfsops);


Standalone file system modules need not do this because the kernel will explicitly get a pointer to the


information structure after the module is loaded.


10







Chapter 2 File system internals


2.4 File systems overview


2.4.1 On-disk file systems


On-disk file systems are those that store their contents on a physical drive.


• Fast File System (ffs): XXX


• Log-structured File System (lfs): XXX


• Extended 2 File System (ext2fs): XXX


• FAT (msdosfs): XXX


• ISO 9660 (cd9660): XXX


• NTFS (ntfs): XXX


2.4.2 Network file systems


• Network File System (nfs): XXX


• Coda (codafs): XXX


2.4.3 Synthetic file systems


• Memory File System (mfs): XXX


• Kernel File System (kernfs): XXX


• Portal File System (portalfs): XXX


• Pseudo-terminal File System (ptyfs): XXX


• Temporary File System (tmpfs): XXX


2.4.4 Layered file systems


• Null File System (nullfs): XXX


• Union File System (unionfs): XXX


• User-map File System (umapfs): XXX


2.4.5 Helper file systems


Helper file systems are just a set of functions used to easily implement other file systems. As such, they


can be considered as libraries. These are:


11







Chapter 2 File system internals


• fifofs: Implements all operations used to deal with named pipes in a file system.


• genfs: Implements generic operations shared across multiple file systems.


• layerfs: Implements generic operations shared across layered file systems (see Section 2.4.4).


• specfs: Implements all operations used to deal with special files in a file system.


2.5 Initialization and cleanup


Drivers often have an initialization routine and a finalization one, called when the driver becomes active


(e.g., at system startup) or inactive (e.g., unloading its module) respectively. File systems are subject to


these rules too, so that they can do global tasks as a whole, regardless of any mount point.


These initialization and finalization tasks can be done from the fs_init and fs_done hooks,


respectively. If the driver is provided as a module, the initialization routine is called when it is loaded and


the cleanup function is executed when it is unloaded. Instead, if it is built into the kernel, the


initialization code is executed at very early stages of kernel boot but the cleanup stuff is never run, not


even when the system is shut down.


Furthermore, the fs_reinit operation is provided to... XXX...


These three operations take the following prototypes:


int fs_init(void);


int fs_reinit(void);


int fs_done(void);


Note how they do not take any parameter, not even a mount point.


As an example, consider the following functions that deal with a malloc type (see Section 1.2.1) defined


for a specific file system:


MALLOC_JUSTDEFINE(M_EGFSMNT, "egfs mount", "egfs mount structures");


void


egfs_init(void)


{


malloc_type_attach(M_EGFSMNT);


...


}


void


12







Chapter 2 File system internals


egfs_done(void)


{


...


malloc_type_detach(M_EGFSMNT);


}


2.6 Mounting and unmounting


The mount operation, namely fs_mount, is probably the most complex one in the VFS layer. Its purpose


is to set up a new mount point based on the arguments received from userland. Basically, it receives the


mount point it is operating on and a data structure that describes the mount call parameters.


Unfortunately, this operation has been overloaded with some semantics that do not really belong to it.


More specifically, it is also in charge of updating the mount point parameters as well as fetching them


from userland. This ought to be cleaned up at some point.


We will see all these details in the following subsections.


2.6.1 Mount call arguments


Most file systems pass information from the userland mount utility to the kernel when a new mount point


is set up; this information generally includes user-tunable properties that tell the kernel how to mount the


file system. This data set is encapsulated in what is known as the mount arguments structure and is often


named after the file system, prepending the _args string to it.


Keep in mind that this structure is only used to communicate the userland and the kernel. Once the call


that passes the information finishes, it is discarded in the kernel side.


The arguments structure is versioned to make sure that the kernel and the userland always use the same


field layout and size. This is achieved by inserting a field at the very beginning of the object, holding its


version.


For example, imagine a virtual file system — one that is not stored on disk; for real (and very similar)


code, you can look at tmpfs. Its mount arguments structure could describe the ownership of the root


directory or the maximum number of files that the file system may hold:


#define EGFS_ARGSVERSION 1


struct egfs_args {


int ea_version;


off_t ea_size_max;


uid_t ea_root_uid;


gid_t ea_root_gid;


mode_t ea_root_mode;


...


}


13







Chapter 2 File system internals


2.6.2 The mount utility


XXX: To be written. Slightly describe how a userland mount utility works.


2.6.3 The fs_mount operation


The fs_mount operation is called whenever a user issues a mount command from userland. It has the


following prototype:


int vfs_mount(struct mount *mp, const char *path, void *data, struct


nameidata *ndp, struct proc *p);


The caller, which is always the kernel, sets up a struct mount object and passes it to this routine through


the mp parameter. It also passes the mount arguments structure (as seen in Section 2.6.1) in the data


parameter. There are several other arguments, but they do not important at this point.


The mp->mnt_flag field indicates what needs to be done (remember that this operation is semantically


overloaded). The following is an outline of all the tasks this function does and also describes the possible


flags for the mnt_flag field:


1. If the MNT_GETARGS flag is set in mp->mnt_flag, the operation returns the current mount


parameters for the given mount point.


This is further detailed in Section 2.6.3.1.


2. Copy the mount arguments structure from userland to kernel space using copyin(9).


This is further detailed in Section 2.6.3.2.


3. If the MNT_UPDATE flag is set in mp->mnt_flag, the operation updates the current mount


parameters of the given mount point based on the new arguments given (e.g., upgrade to read-write


from read-only mode).


This is further detailed in Section 2.6.3.3.


4. At this point, if neither MNT_GETARGS nor MNT_UPDATE were set, the operation sets up a new mount


point.


This is further detailed in Section 2.6.3.4.


2.6.3.1 Retrieving mount parameters


When the fs_mount operation is called with the MNT_GETARGS flag in mp->mnt_flag, the routine


creates and fills the mount arguments structure based on the data of the given mount point and returns it


to userland by using copyout(9).


This heavily depends on the file system, but consider the following simple example:


if (mp->mnt_flag & MNT_GETARGS) {


struct egfs_args args;


struct egfs_mount *emp;


if (mp->mnt_data == NULL)


14







Chapter 2 File system internals


return EIO;


emp = (struct egfs_mount *)mp->mnt_data;


args.ea_version = EGFS_ARGSVERSION;


... fill the args structure here ...


return copyout(&args, data, sizeof(args));


}


2.6.3.2 Getting the arguments structure


The data argument given to the fs_mount operation points to a memory region in user-space.


Therefore, it must be first copied into kernel-space by means of copyin(9) to be able to access it in a safe


fashion.


Here is a little example:


int error;


struct egfs_args args;


if (data == NULL)


return EINVAL;


error = copyin(data, &args, sizeof(args));


if (error)


return error;


if (args.ea_version != EGFS_ARGSVERSION)


return EINVAL;


2.6.3.3 Updating mount parameters


When the fs_mount operation is called with the MNT_UPDATE flag in mp->mnt_flag, the routine


modifies the current parameters of the given mount point based on the new parameters given in the


mount arguments structure.


2.6.3.4 Setting up a new mount point


If neither MNT_GETARGS nor MNT_UPDATE were set in mp->mnt_flag when calling fs_mount, the


operation sets up a new mount point. In other words: it fills the struct mount object given in mp with


correct data.


The very first thing that it usually does is to allocate a structure that defines the mount point. This


structure is named after the file system, appending the _mount string to it, and is often very similar to the


mount arguments structure. Once allocated and filled with appropriate data, the object is attached to the


mount point by means of its mnt_data field.


Later on, the operation gets a file system identifier for the mount point being set up using the


vfs_getnewfsid(9) function and assigns.


15







Chapter 2 File system internals


At last, it sets up any statvfs-related information for the mount point by using the set_statvfs_info


function.


This is all clearer by looking at a simple code example:


emp = (struct egfs_mount *)malloc(sizeof(struct egfs_mount), M_EGFSMOUNT, M_WAITOK);


KASSERT(emp != NULL);


/* Fill the emp structure with file system dependent values. */


emp->em_root_uid = args.ea_rood_uid;


... more comes here ...


mp->mnt_data = emp;


mp->mnt_flag = MNT_LOCAL;


mp->mnt_stat.f_namemax = MAXNAMLEN;


vfs_getnewfsid(mp);


return set_statvfs_info(path, UIO_USERSPACE, args.ea_fspec, UIO_SYSSPACE, mp, p);


2.6.4 The vfs_unmount function


Unmounting a file system is often easier than mounting it, plus there is no need to write a file system


dependent userland utility to do an unmount. This is accomplished by the fs_unmount operation, which


has the following signature:


int fs_unmount(struct mount *mp, int mntflags, struct proc *p);


The function’s outline is similar to the following:


1. Ask the kernel to finalize all pending I/O on the given mount point. This is done through the


vflush(9) function. Note that its last argument is a flags bitfield which must carry the FORCECLOSE


flag if the file system is being forcibly unmounted — in other words, if the MNT_FORCE flag was set


in mntflags.


2. Free all resources attached to the mount point — i.e., to the mount structure pointed to by


mp->mnt_data. This heavily depends on the file system internals.


3. Destroy the file system specific mount structure and detach it from the mp mount point.


Here is a simple example of the previous outline:


int error, flags;


struct egfs_mount *emp;


flags = (mntflags & MNT_FORCE) ? FORCECLOSE : 0;


error = vflush(mp, NULL, flags);


if (error != 0)


return error;


16







Chapter 2 File system internals


emp = (struct egfs_mount *)mp->mnt_data;


... free emp contents here ...


free(mp->mnt_data, M_EGFSMNT);


mp->mnt_data = NULL;


return 0;


2.7 File system statistics


The statvfs(2) system call is used to retrieve statistical information about a mounted file system, such as


its block size, number of used blocks, etc. This is implemented in the file system driver by the


fs_statvfs operation whose prototype is:


int fs_statvfs(struct mount *mp, struct statvfs *sbp, struct proc *p);


The execution flow of this operation is quite simple: it basically fills sbp’s fields with appropriate data.


This data is derivable from the current status of the file system — e.g., through the contents of


mp->mnt_data.


It is interesting to note that some of the information returned by this operation is stored in the generic


part of the mp structure, shared across all file systems. The copy_statvfs_info function takes care to


copy this common information into the resulting structure with minimum efforts. Among other things, it


copies the file system’s identifier, the number of writes, the maximum length of file names, etc.


As a general rule of thumb, the code in fs_statvfs manually initializes the following fields in the sbp


structure: f_iosize, f_frsize, f_bsize, f_blocks, f_bavail, f_bfree, f_bresvd, f_files,


f_favail, f_ffree and f_fresvd. Details information about each field can be found in statvfs(2).


For example, the operation’s content may look like:


... fill sbp’s fields as described above ...


copy_statvfs_info(sbp, mp);


return 0;


2.8 vnode management


2.8.1 vnode’s life cycle


A vnode, like any other system object, has to be allocated before it can be used. Similarly, it has to be


released and deallocated when unused. Things are a bit special when it comes to handling a vnode, hence


this whole section dedicated to explain it.


17







Chapter 2 File system internals


XXX: A graph could be excellent to have at this point.


A vnode is first brought to life by the getnewvnode(9) function; this returns a clean vnode that can be


used to represent a file. This new vnode is also marked as used and remains as such until it is marked


inactive. A vnode is inactivated by calling releasing the last reference to it. When this happens,


VOP_INACTIVE is called for the vnode and the vnode is placed on the free list.


The free list, despite its confusing name, contains real, live, but not currently used vnodes. It is like a big


LRU list. vnodes can be brought to life again from this list by using the vget(9) function, and when that


happens, they leave the free list and are marked as used again until they are inactivated. Why does this


list exist, anyway? For example, think about all the commands that need to do path lookups on /usr.


Anything in /usr/bin, /usr/sbin, /usr/pkg/bin and /usr/pkg/sbin will need the /usr vnode.


If it had to be regenerated from scratch each time, it could be slow. Therefore, it is kept around on the


free list.


vnodes on the free list can also be reclaimed which means that they are effectively killed. This can


either happen because the vnode is being reused for a new vnode (through getnewvnode) or because it


is being shut down (e.g., due to a revoke(2)).


Note that the kern.maxvnodes sysctl(9) node specifies how many vnodes can be kept active at a time.


2.8.2 vnode tags


vnodes are tagged to identify their type. The tag attached to them must not be used within the kernel; it is


only provided to let userland applications (such as pstat(8)) to print information about vnodes.


Note that its usage is deprecated because it is not extensible from dynamically loadable modules.


However, since they are currently used, each file system defines a tag to describe its own vnodes. These


tags can be found in src/sys/sys/vnode.h and vnode(9).


2.8.3 Allocation of a vnode


vnodes are allocated in three different scenarios:


• Access to existing files: the kernel does a file name lookup as described in Section 2.10.2. When the


vnode lookup operation finds a match, it allocates a vnode for the chosen file and returns it to the


system.


• Creation of a new file: the file system specific code allocates a new vnode after the successful creation


of the new file and returns it to the file system generic code. This can happen as a result of the vnode


create, mkdir, mknod and symlink operations.


• Access to a file through a NFS file handle: when the file system is asked to convert an NFS file handle


to a vnode through the fhtovp vnode operation, it may need to allocate a new vnode to represent the


file. See Section 2.15.


It is important to recall that vnodes are unique per file. Special care is taken to avoid allocating more than


one vnode for a single physical file. Each file system has its own method to achieve this; as an example,


tmpfs keeps a map between file system nodes and vnodes, where the former are its keys.


However, please do note that there may be files with no in-core representation (i.e., no vnode). Only


active and inactive but not-yet-reclaimed files are represented by a vnode.


18







Chapter 2 File system internals


A simple example that illustrates vnode allocation can be found in the tmpfs_alloc_vp function of


src/sys/fs/tmpfs/tmpfs_subr.c.


XXX: I think fs_vget has to be described in this section.


2.8.4 Deallocation of a vnode


The procedure to deallocate vnodes is usually trivial: it generally cleans up any file system specific


information that may be attached to the vnode.


Keep in mind that there is a single place in the code where vnodes can be detached from their underlying


nodes and destroyed. This place is in the vnode reclaim operation. Doing it from any other place will


surely cause further trouble because the vnode may still be active or reusable (see Section 2.8.1).


Note that the v_data pointer must be set to null before exiting the reclaim vnode operation or the system


will complain because the vnode was not properly cleaned.


This function is also in charge of releasing the underlying real node, if needed. For example, when a file


is deleted the corresponding vnode operation is executed — be it a delete or a rmdir — but the vnode is


not released until it is reclaimed. This means that if the real node was deleted before this happened, the


vnode would be left pointing to an invalid memory area.


Consider the following sample operation:


int


egfs_reclaim(void *v)


{


struct vnode *vp = ((struct vop_reclaim_args *)v)->a_vp;


struct egfs_node *node;


node = (struct egfs_node *)vp->v_data;


cache_purge(vp);


vp->v_data = NULL;


node->en_vnode = NULL;


if (node->en_nlinks == 0)


... free the underlying node ...


return 0;


}


However, keep in mind that releasing (marking it inactive) a vnode is not the same as reclaiming it. The


real reclaiming will often happen at a much later time, unless explicitly requested. The operations that


remove files from disk often execute the reclaim code on purpose so that the vnode and its associated


disk space is released as soon as possible. This can be done by using the vrecycle(9) function.


As an example:


int


egfs_inactive(void *v)


{


struct vnode *vp = ((struct vop_inactive_args *)v)->a_vp;


19







Chapter 2 File system internals


struct egfs_node *node;


node = (struct egfs_node *)vp->v_data;


if (node->en_nlinks == 0) {


/* The file was deleted from the disk; reclaim it as


* soon as possible to free its physical space. */


vrecycle(vp, NULL, p);


}


return 0;


}


2.8.5 vnode’s locking protocol


vnodes have, as almost all other system objects, a locking protocol associated to them to avoid access


interferences and deadlocks. These may arise in two scenarios:


• In uniprocessor systems: a vnode operation returns before the operation is complete, thus having to


lock the vnode to prevent unrelated modifications until the operation finishes. This happens because


most file systems are asynchronous.


For example: the read operation prepares a read to a file, launches it, puts the process requesting the


read to sleep and yields execution to another process. Some time later, the disk responds with the


requested data, returning it to the original process, which is awoken. The system must ensure that


while the process was sleeping, the vnode suffers no changes.


• In multiprocessor systems: two different CPUs want to access the same file at the same time, thus


needing to pass through the same vnode to reach it. Furthermore, the same problems that appear in


uniprocessor systems can also appear here.


Each vnode operation has a specific locking contract it must comply to, which is often different from


other operations (this makes the protocol very complex and ought to be simplified). These contracts are


described in vnode(9) and vnodeops(9). You can also find them in the form of assertions in tmpfs’ code,


should you want to see them expressed in logical notation.


As regards vnode operations, each file system implements locking primitives in the vnode layer. These


primitives allow to lock a vnode (vop_lock), unlock it (vop_unlock) and test whether it is locked or


not (vop_islocked). Given that these operations are common to all file systems, the genfs pseudo-file


system provides a set of functions that can be used instead of having to write custom ones. These are


genfs_lock, genfs_unlock and genfs_islocked and are always used except for very rare cases.


It is very important to note that vop_lock is never used directly. Instead, the vn_lock(9) function is used


to lock vnodes. Unlocking, however, is in charge of vop_unlock.


20







Chapter 2 File system internals


2.9 The root vnode


As described in Section 2.10, the kernel does all path name lookups in an iterative way. This means that


in order to reach any file within a mount point, it must first traverse the mount point itself. In other


words, the mount point is the only place through which the system can access a file system and thus it


must be able to resolve it.


In order to accomplish this, each file system provides the fs_root hook which returns a vnode


representing its root node. The prototype for this function is:


int fs_root(struct mount *mp, struct vnode **vpp);


2.10 Path name resolution procedure


XXX Write an introduction.


2.10.1 Path name components


A path name component is a non-divisible part of a complete path name — one that does not contain the


slash (/) character. Any path name that includes one or more slashes in it can be divided in two or more


different atoms.


Path name components are represented by struct componentname objects (defined in


src/sys/sys/namei.h), heavily used by several vnode operations. The following are its most


important fields:


• cn_flags: A bitfield that describes the element. Of special interest is the HASBUF flag, which


indicates that this object holds a valid path name buffer (see the cn_pnbuf field below).


• cn_pnbuf: A pointer to the buffer holding the complete path name. This is only valid if the


cn_flags bitfield has the HASBUF flag.


In most situations, this buffer is automatically allocated and deallocated by the system, but this is not


always true. Sometimes, it is necessary to free it in some of the vnode operations themselves;


vnodeops(9) gives more details about this.


• cn_nameptr: A pointer within cn_pnbuf that specifies the start of the path name component


described by this object. Must always be used in conjunction with cn_namelen.


• cn_namelen: The length of this path name component, starting at cn_nameptr.


2.10.2 The lookup algorithm


To resolve a path name (or to lookup a path name) means to get a vnode that uniquely represents based


on a previously specified path name, be it absolute or relative.


The NetBSD kernel uses a two-level iterative algorithm to resolve path names. The first level is file


system independent and is carried on by the namei(9) function, while the second one relies on internal


file system details and is achieved through the lookup vnode operation.


21







Chapter 2 File system internals


The following list illustrates the lookup algorithm. Lots of details have been left out from it to make


things simpler; namei(9) and vnodeops(9) contain all the missing information:


XXX: <wrstuden> I think you simplified the description too much. You left out lookup(), and ascribe


certain actions to namei() when they are performed by lookup(). While I like your attempt to keep it


simple, I think both namei() and lookup() need describing. lookup() takes a path name and turns it into a


vnode, and namei() takes the result and handles symbolic link resolution.


XXX: <jmmv> I currently don’t know very much about the internals of lookup() and namei(), so I’ve left


the simplified description in the document, temporarily.


1. namei constructs a cnp path name component (of type struct componentname as described in


Section 2.10.1); its buffer holds the complete path name to look for. The component pointers are


adjusted to describe the path name’s first component.


2. The namei operation gets the vnode for the lookup’s starting point (always a directory). For


absolute path names, this is the root directory’s vnode. For relative path names, it is the current


working directory’s vnode, as seen by the calling userland process.


This vnode is generally called dvp, standing for directory vnode pointer.


3. namei calls the vnode lookup operation on the dvp vnode, telling it which is the component it has to


resolve (cnp) starting from the given directory.


4. If the component exists in the directory, the vnode lookup operation must return a vnode for its


respective entry.


However, if the component does not exist in the directory, the lookup will fail returning an


appropriate error code. There are several other error conditions that have to be reported, all of them


appropriately described in vnodeops(9).


5. namei updates dvp to point to the returned vnode and advances cnp to the next component, only if


there are more components to look for. In that case, the procedure continues from 3.


In case there are no more components to look for, namei returns the vnode of the last entry it


located.


There are several reasons behind this two-level lookup mechanism, but they have been left over for


simplicity. XXX: The 4.4BSD book gives them all; we should either link to it or explain these here in our


own words (preferably the latter).


2.10.3 Lookup hints


One of the arguments passed to the lookup algorithm is a hint that specifies the kind of lookup to


execute. This hint specifies whether the lookup is for a file creation (CREATE), a deletion (DELETE) or a


name change (RENAME). The file system uses these hints to speed up the corresponding operation —


generally to cache some values that will be used while processing the real operation later on.


For example, consider the unlink(2) system call whose purpose is to delete the given file name. This


operation issues a lookup to ensure that the file exists and to get a vnode for it. This way, it is able to call


the vnode’s remove operation. So far, so good. Now, the operation itself has to delete the file, but


removing a file means, among other things, detaching it from the directory containing it. How can the


remove operation access the directory entry that pointed to the file being removed? Obviously, it can do


another lookup and traverse a potentially long directory. But is this really needed?


22







Chapter 2 File system internals


Remember that unlink(2) first got a vnode for the entry to be removed. This implied doing a lookup,


which traversed the file’s parent directory looking for its entry. The algorithm reached the entry once, so


there is no need to repeat the process once we are in the vnode operation itself.


In the above situation, the second lookup is avoided by caching the affected directory entry while the


lookup operation is executed. This is only done when the DELETE hint is given.


The same situation arises with file creations (because new entries may be overwrite previously deleted


entries in on-disk file systems) or name changes (because the operation needs to modify the associated


directory entry).


2.11 File management


XXX: Write an introduction.


2.11.1 Creation of regular files


XXX: To be written. Describe vop_create.


2.11.2 Creation of hard links


XXX: To be written. Describe vop_link.


2.11.3 Removal of a file


XXX: To be written. Describe vop_remove.


2.11.4 Rename of a file


XXX: To be written. Describe vop_rename.


2.11.5 Reading and writing


vnodes have an operation to read data from them (vop_read) and one to write data to them


(vop_write) both called by their respective system calls, read(2) and write(2). The read operation


receives an offset from which the read starts, a number that specifies the number of bytes to read (length)


and a buffer into which the data will be stored. Similarly, the write operation receives an offset from


which the write starts, the number of bytes to write and a buffer from which the data is read.


There is also the mmap(2) system call which maps a file into memory and provides userland direct


access to the mapped memory region.


23







Chapter 2 File system internals


2.11.5.1 uio objects


The struct uio type describes a data transfer between two different buffers. One of them is stored within


the uio object while the other one is external (often living in userland space). These objects are created


when a new data transfer starts and are alive until the transfer finishes completely; in other words, they


identify a specific transfer.


The following is a description of the most important fields in struct uio (the ones needed for basic


understanding on how it works). For a complete list, see uiomove(9).


• uio_offset: The offset within the file from which the transfer starts. If the transfer is a read, the


offset must be within the file size limits; if it is a write, it can extend beyond the end of the file — in


which case the file is extended.


• uio_resid (also known as the residual count): Number of bytes remaining to be transferred for this


object.


• A set of pointers to buffers into/from which the data will be read/written. These are not used directly


and hence their names have been left out.


• A flag that indicates if data should be read from or written to the buffers described by the uio object.


This may be easier to understand by discussing a little example. Consider the following userland


program:


char buffer[1024];


lseek(fd, 100, SEEK_SET);


read(fd, buffer, 1024);


The read(2) system call constructs an uio object containing an offset of 100 bytes and a residual count of


1024 bytes, making the uio’s buffers point to buffer and marking them as the data’s target. If this was a


write operation, the uio object’s buffers could be the data’s source.


In order to simplify uio object management, the kernel provides the uiomove(9) function, whose


signature is:


int uiomove(void *buf, size_tn, struct uio *uio);


This function copies up to n bytes between the kernel buffer pointed to by buf into the addresses


described by the uio instance. If the transfer is successful, the uio object is updated so that uio_resid


is decremented by the amount of data copied, uio_offset is increased by the same amount and the


internal buffer pointers are updated accordingly. This eases calling uiomove repeatedly (e.g., from


within a loop) until the transfer is complete.


2.11.5.2 Getting and putting pages


As seen in Section 2.11.5.1, data transfers are described by a high-level object that does not take into


account any detail of the underlying file system. More specifically, they are not tied to any specific


on-disk block organization. (Remember that most on-disk file systems store data scattered across the disk


(due to fragmentation); therefore, the transfers have to be broken up into pieces to read or write the data


from the appropriate disk blocks.)


24







Chapter 2 File system internals


Breaking the transfer into pieces, requesting them to the disk and handling the results is a (very) complex


operation. Fortunately, the UVM memory subsystem (see Section 1.1) simplifies the whole task. Each


vnode has a struct uvm_object (as described in Section 1.1.1) associated to it, backed by a vnode.


The vnode backs up the uobj through its vop_getpages and vop_putpages operations. As these two


operations are very generic (from the point of view of managing memory pages), genfs provides two


generic functions to implement them. These are genfs_getpages and genfs_putpages, which will


usually suit the needs of any on-disk file system. How they deal with specific file system details is


something detailed in Section 2.11.5.5.


2.11.5.3 Memory-mapping a file


Thanks to the particular UBC implementation in NetBSD (see Section 2.11.5.2), a file can be trivially


mapped into memory. The mmap(2) system call is used to achieve this and the kernel handles it


independently from the file system.


The VOP_MMAP method is used to only inform the file system that the vnode is about to be


memory-mapped and ask the file system if it allows the mapping to happen.


After the file is memory-mapped, file system I/O is handled by UVM through the vnode pager and ends


up in vop_getpages and vop_putpages. In a sense this is very much like regular reading and writing,


but instead of explicitly calling vop_read and vop_write, which then use uiomove, the memory


window is accessed directly.


2.11.5.4 The read and write operations


Thanks to the particular UBC implementation in NetBSD (see Section 2.11.5.2), the vnode’s read and


write operations (vop_read and vop_write respectively) are very simple because they only deal with


virtual memory. Basically, all they need to do is memory-map the affected part of the file and then issue a


simple memory copy operation.


As an example, consider the following sample read code:


int


egfs_read(void *v)


{


struct vnode *vp = ((struct vop_read_args *)v)->a_vp;


struct uio *uio = ((struct vop_read_args *)v)->a_uio;


int error;


struct egfs_node *node;


node = (struct egfs_node *)vp->v_data;


if (uio->uio_offset < 0)


return EINVAL;


if (uio->uio_resid == 0 || uio->uio_offset >= node->en_size)


return 0;


if (vp->v_type == VREG) {


error = 0;


25







Chapter 2 File system internals


while (uio->uio_resid > 0 && error == 0) {


int flags;


off_t len;


void *win;


len = MIN(uio->uio_resid, node->en_size -


uio->uio_offset);


if (len == 0)


break;


win = ubc_alloc(&vp->v_uobj, uio->uio_offset,


&len, UBC_READ);


error = uiomove(win, len, uio);


flags = UBC_WANT_UNMAP(vp) ? UBC_UNMAP : 0;


ubc_release(win, flags);


}


} else {


... left out for simplicity (if needed) ...


}


return error;


}


2.11.5.5 Reading and writing pages


As seen in Section 2.11.5.2, the genfs_getpages and genfs_putpages functions are enough for


most on-disk file systems. But if they are abstract, how do they deal with the specific details of each file


system? E.g., if the system wants to fetch the third page of the /foo/bar file, how does it know which


on-disk blocks it must read to bring the requested page into memory? Where does the real transfer take


place?


The mapping between memory pages and disk blocks is done by the vnode’s bmap operation,


vop_bmap, called by the paging functions. This receives the file’s logical block number to be accessed


and converts it to the internal, file system specific block number.


Once bmap returns the physical block number to be accessed, the generic page handling functions check


whether the block is already in memory or not. If it is not, a transfer is done by using the vnode’s strategy


operation (vop_strategy).


More information about these operations can be found in the vnodeops(9) manual page.


2.11.6 Attributes management


Within the NetBSD kernel, a file has a set of standard and well-known attributes associated to it. These


are:


• A type: specifies whether the file is a regular file (VREG), a directory (VDIR), a symbolic link (VLNK), a


special device (VCHR or VBLK), a named pipe (VFIFO) or a socket (VSOCK). The constants mentioned


26







Chapter 2 File system internals


here are the vnode types, which do not necessarily match the internal type representation of a file


within a file system.


• An ownership: that is, a user id and a group id.


• An access mode.


• A set of flags: these include the immutable flag, the append-only flag, the archived flag, the opaque


flag and the nodump flag. See chflags(2) for more information.


• A hard link count.


• A set of times: these include the birth time, the change time, the access time and the modification time.


See Section 2.11.7 for more details.


• A size: the exact size of the file, in bytes.


• A device number: in case of a special device (character or block ones), its number is also stored.


The NetBSD kernel uses the struct vattr type (detailed in vattr(9)) to handle all these attributes all in a


compact way. Based on this set, each file system typically supports these attributes in its node


representation structure (unless they are fictitious and faked when accessed). For example, FFS could


store them in inodes, while FAT could save only some of them and fake the others at run time (such as


the ownership).


A struct vattr instance is initialized by using the VATTR_NULL macro, which sets its vnode type to VNON


and all of its other fields to VNOVAL, indicating that they have no valid values. After using this macro, it


is the responsibility of the caller to set all the fields it wants to the correct values. The consumer of the


object shall not use those fields whose value is unset (VNOVAL).


It is interesting to note that there are no vnode operations that match the regular system calls used to set


the file ownership, its mode, etc. Instead, nodes provide two operations that act on the whole attribute set:


vop_getattrs to read them and vop_setattrs to set them. The rest of this section describes them.


2.11.6.1 Getting file attributes


The vop_getattr vnode operation fetches all the standard attributes from a given vnode. All it does is


fill the given struct vattr structure with the correct values. For example:


int


egfs_getattr(void *v)


{


struct vnode *vp = ((struct vop_getattr_args *)v)->a_vp;


struct vattr *vap = ((struct vop_getattr_args *)v)->a_vap;


struct egfs_node *node;


node = (struct egfs_node *)vp->v_data;


VATTR_NULL(vap);


switch (node->en_type) {


case EGFS_NODE_DIR:


vap->va_type = VDIR;


break;


case ...:


27







Chapter 2 File system internals


...


}


vap->va_mode = node->en_mode;


vap->va_uid = node->en_uid;


vap->va_gid = node->en_gid;


vap->va_nlink = node->en_nlink;


vap->va_flags = node->en_flags;


vap->va_size = node->en_size;


... continue filling values ...


return 0;


}


2.11.6.2 Setting file attributes


Similarly to the vop_getattr operation, vop_setattr sets a subset of file attributes at once. Only


those attributes which are not VNOVAL are changed. Furthermore, the operation ensures that the caller is


not trying to set unsettable values; for example, one cannot set (i.e., change) the file type.


Of special interest is that the file’s size can be changed as an attribute. In other words, this operation is


the entry point for file truncation calls and it is its responsibility to call vop_truncate when


appropriate. The system never calls the vnode’s truncate operation directly.


A little sketch:


int


egfs_setattr(void *v)


{


struct vnode *vp = ((struct vop_setattr_args *)v)->a_vp;


struct vattr *vap = ((struct vop_setattr_args *)v)->a_vap;


struct ucred *cred = ((struct vop_setattr_args *)v)->a_cred;


struct proc *p = ((struct vop_setattr_args *)v)->a_p;


/* Do not allow setting unsettable values. */


if (vap->va_type != VNON || vap->va_nlink != VNOVAL || ...)


return EINVAL;


if (vap->va_flags != VNOVAL) {


... set node flags here ...


if error, return it


}


if (vap->va_size != VNOVAL) {


... verify file type ...


error = VOP_TRUNCATE(vp, size, 0, cred, p);


if error, return it


}


... etcetera ...


return 0;


}


28







Chapter 2 File system internals


2.11.7 Time management


Each node has four times associated to it, all of them represented by struct timespec objects. These times


are:


• Birth time: the time the file was born. Cannot be changed after the file is created.


• Access time: the time the file was last accessed.


• Change time: the time the file’s node was last changed. For example, if a new hard link for an existing


file is created, its change time is updated.


• Modification time: the time the file’s contents were last modified.


Given that these times reflect the last accesses to the underlying files, they need to be modified extremely


often. If this was done synchronously, it could impose a big performance penalty on files accessed


repeatedly. This is why time updates are done in a delayed manner.


Nodes usually have a set of flags (which are only kept in memory, never written to disk) that indicate


their status to let asynchronous actions know what to do. These flags are used, among other things, to


indicate that a file’s times have to be updated. They are set as soon as the file is changed but the times are


not really modified until the vnode’s update operation (vop_update) is called; see vnodeops(9) for more


details on this.


vop_update is called asynchronously by the kernel from time to time. However, a file system may opt


to execute it on purpose as it wishes; such a situation may be when it is mounted synchronously, as it will


be updating the times as soon as the changes happen.


2.11.8 Access control


The file system is in charge of ensuring that a request is valid or not, permission-wise. This is done with


the vnode’s access operation (vop_access), which receives the caller’s credentials and the requested


access mode. The operation then checks if these are compatible with the current attributes of the file


being accessed.


The operation generally follows this structure:


1. If the file system is mounted read only, and the caller wants to write to a directory, to a link or to a


regular file, then access must be denied.


2. If the file is immutable and the caller wants to write to it, access is denied.


3. At last, vaccess(9) is used to check all remaining access possibilities. This simplifies a lot the code


of this operation.


For example:


int


egfs_access(void *v)


{


struct vnode *vp = ((struct vop_access_args *)v)->a_vp;


int mode = ((struct vop_access_args *)v)->a_mode;


struct ucred *cred = ((struct vop_access_args *)v)->a_cred;


struct egfs_node *node;


29







Chapter 2 File system internals


node = (struct egfs_node *)vp->v_data;


if (vp->v_type == VDIR || vp->v_type == VLNK || vp->v_type == VREG)


if (mode & VWRITE &&


vp->v_mount->mnt_flag & MNT_RDONLY)


return EROFS;


}


if (mode & VWRITE && mode->tn_flags & IMMUTABLE)


return EPERM;


return vaccess(vp->v_type, node->en_mode, node->en_uid,


node->en_gid, mode, cred);


}


2.12 Symbolic link management


2.12.1 Creation of symbolic links


XXX: To be written. Describe vop_symlink.


2.12.2 Read of symbolic link’s contents


XXX: To be written. Describe vop_readlink.


2.13 Directory management


A directory maps file names to file system nodes. The internal representation of a directory depends


heavily on the file system, but the vnode layer provides an abstract way to access them. This includes the


vop_lookup, vop_mkdir, vop_rmdir and vop_readdir operations.


For the rest of this section, assume that the following simple struct egfs_dirent describes a directory


entry:


struct egfs_dirent {


char ed_name[MAXNAMLEN];


int ed_namelen;


off_t ed_fileid;


};


2.13.1 Creation of directories


XXX: To be written. Describe vop_mkdir.


30







Chapter 2 File system internals


2.13.2 Removal of directories


XXX: To be written. Describe vop_rmdir.


2.13.3 Reading directories


The vop_readdir operation reads the contents of directory in a file system independent way.


Remember that the regular read operation can also be used for this purpose, though all it returns is the


exact contents of the directory; this cannot be used by programs that aim to be portable (not to mention


that some file systems do not support this functionality).


This operation returns a struct dirent object (as seen in dirent(5)) for each directory entry it reads from


the offset it was given up to that offset plus the transfer length. Because it must read entire objects, the


offset must always be aligned to a physical directory entry boundary; otherwise, the function shall return


an error. This is not always true, though: some file systems have variable-sized entries and they use


another metric to determine which entry to read (such as its ordering index).


It is important to note that the size of the resulting struct dirent objects is variable: it depends on the name


stored in them. Therefore, the code first constructs these objects (settings all its fields by hand) and then


uses the _DIRENT_SIZE macro to calculate its size, later assigned to the d_reclen field. For example:


struct egfs_dirent de;


struct egfs_node *node;


struct dirent d;


... read a directory entry from disk into de ...


... make node point to the de.ed_fileid node ...


switch (node->ed_type) {


case EGFS_NODE_DIR:


d.d_type = DT_DIR;


case ...:


...


}


d.d_namlen = de.ed_namelen;


(void)memcpy(d.d_name, de.ed_name, de.ed_namelen);


d.d_name[de.ed_namelen] = ’\0’;


d.d_reclen = _DIRENT_SIZE(&d);


With this in mind, the operation also ensures that the offset is correct, locates the first entry to return and


loops until it has exhausted the transmission’s length. The following illustrates the process:


int


egfs_readdir(void *v)


{


struct vnode *vp = ((struct vop_readdir_args *)v)->a_vp;


struct uio *uio = ((struct vop_readdir_args *)v)->a_uio;


int *eofflag = ((struct vop_readdir_args *)v)->a_eofflag;


int entry_counter;


int error;


31







Chapter 2 File system internals


off_t startoff;


struct egfs_dirent de;


struct egfs_node *dnode;


struct egfs_node *node;


if (vp->v_type != VDIR)


return ENOTDIR;


if (uio->uio_offset % sizeof(struct egfs_dirent) > 0)


return EINVAL;


dnode = (struct egfs_node *)vp->v_data;


... read the first directory entry into de ...


... make node point to the de.ed_fileid node ...


entry_counter = 0;


startoff = uio->uio_offset;


do {


struct dirent d;


... construct d from de ...


error = uiomove(&d, d.d_reclen, uio);


entry_counter++;


... read the next directory entry into de ...


... make node point to the de.ed_fileid node ...


} while (error == 0 && uio->uio_resid > 0


&& de is valid)


/* Important: Update transfer offset to match on-disk


* directory entries, not virtual ones. */


uio->uio_offset = entry_counter * sizeof(egfs_dirent);


if (eofflag != NULL)


*eofflag = (de is invalid?);


return error;


}


File systems that support NFS take some extra steps in this function. See vnodeops(9) for more details.


XXX: Cookies and the eof flag should really be explained here.


2.14 Special nodes


File system that support named pipes and/or special devices implement the vnode’s mknod operation


(vop_mknod) in order to create them. This is extremely similar to vop_create. However, it takes some


extra steps because named pipes and special devices are not like regular files: their contents are not


32







Chapter 2 File system internals


stored in the file system and they have specific access methods. Therefore, they cannot use the file


system’s regular vnode operations vector.


In other words: the file system defines two additional vnode operations vectors: one for named pipes and


one for special devices. Fortunately, this task is easy because the virtual fifofs


(src/sys/miscfs/fifofs) and specfs (src/sys/miscfs/specfs) file systems provide generic


vnode operations. In general, these vectors use all the generic operations except for a few functions.


Because the on-disk file system has to update the node’s times when accessing these special files, some


operations are implemented on a file system basis and later call the generic operations implemented in


fifofs and specfs. This basically means that those file systems implement their own vop_close,


vop_read and vop_write operations for named pipes and for special devices.


As a little example of such an operation:


int


egfs_fifo_read(void *v)


{


struct vnode *vp = ((struct vop_read_args *)v)->a_vp;


((struct egfs_node *)vp->v_data)->tn_status |= TMPFS_NODE_ACCESSED;


return VOCALL(fifo_vnodeop_p, VOFFSET(vop_read), v);


}


Remember that these two additional operations vectors are added to the vnode operations description


structure; otherwise, they will are not initialized and therefore will not work. See Section 2.3.3.


For more sample code, consult src/sys/fs/tmpfs/fifofs_vnops.c,


src/sys/fs/tmpfs/fifofs_vnops.h, src/sys/fs/tmpfs/specfs_vnops.c and


src/sys/fs/tmpfs/specfs_vnops.h.


2.15 NFS support


XXX: To be written. Describe vop_fhtovp and vfs_vptofh.


2.16 Step by step file system writing


1. Create the src/sys/fs/egfs directory.


2. Create a minimal src/sys/fs/egfs/files.egfs file:


deffs fs_egfs.h EGFS


file fs/egfs/egfs_vfsops.c egfs


file fs/egfs/egfs_vnops.c egfs


3. Modify src/sys/conf/files to include files.egfs. I.e., add the following line:


include "fs/egfs/files.egfs"


4. Define the file system’s name in src/sys/sys/mount.h. I.e., add the following line:


#define MOUNT_EGFS "egfs"


33







Chapter 2 File system internals


5. Define the file system’s vnode tag type.


See Section 2.8.2.


6. Add the file system’s magic number in the Linux compatibility layer,


src/sys/compat/linux/common/linux_misc.c and


src/sys/compat/linux/common/linux_misc.h, if applicable. Fallback to the default number


if there is nothing appropriate for the file system.


7. Create a minimal src/sys/fs/egfs/egfs_vnops.c file that contains stubs for all vnode


operations.


#include <sys/cdefs.h>


__KERNEL_RCSID(0, "$NetBSD: chap-file-system.xml,v 1.6 2017/01/10 11:30:31 ryoon Exp $");


#include <sys/param.h>


#include <sys/vnode.h>


#include <miscfs/genfs/genfs.h>


#define egfs_lookup genfs_eopnotsupp


#define egfs_create genfs_eopnotsupp


#define egfs_mknod genfs_eopnotsupp


#define egfs_open genfs_eopnotsupp


#define egfs_close genfs_eopnotsupp


#define egfs_access genfs_eopnotsupp


#define egfs_getattr genfs_eopnotsupp


#define egfs_setattr genfs_eopnotsupp


#define egfs_read genfs_eopnotsupp


#define egfs_write genfs_eopnotsupp


#define egfs_fcntl genfs_eopnotsupp


#define egfs_ioctl genfs_eopnotsupp


#define egfs_poll genfs_eopnotsupp


#define egfs_kqfilter genfs_eopnotsupp


#define egfs_revoke genfs_eopnotsupp


#define egfs_mmap genfs_eopnotsupp


#define egfs_fsync genfs_eopnotsupp


#define egfs_seek genfs_eopnotsupp


#define egfs_remove genfs_eopnotsupp


#define egfs_link genfs_eopnotsupp


#define egfs_rename genfs_eopnotsupp


#define egfs_mkdir genfs_eopnotsupp


#define egfs_rmdir genfs_eopnotsupp


#define egfs_symlink genfs_eopnotsupp


#define egfs_readdir genfs_eopnotsupp


#define egfs_readlink genfs_eopnotsupp


#define egfs_abortop genfs_eopnotsupp


#define egfs_inactive genfs_eopnotsupp


#define egfs_reclaim genfs_eopnotsupp


#define egfs_lock genfs_eopnotsupp


#define egfs_unlock genfs_eopnotsupp


#define egfs_bmap genfs_eopnotsupp


#define egfs_strategy genfs_eopnotsupp


#define egfs_print genfs_eopnotsupp


34







Chapter 2 File system internals


#define egfs_pathconf genfs_eopnotsupp


#define egfs_islocked genfs_eopnotsupp


#define egfs_advlock genfs_eopnotsupp


#define egfs_blkatoff genfs_eopnotsupp


#define egfs_valloc genfs_eopnotsupp


#define egfs_reallocblks genfs_eopnotsupp


#define egfs_vfree genfs_eopnotsupp


#define egfs_truncate genfs_eopnotsupp


#define egfs_update genfs_eopnotsupp


#define egfs_bwrite genfs_eopnotsupp


#define egfs_getpages genfs_eopnotsupp


#define egfs_putpages genfs_eopnotsupp


int (**egfs_vnodeop_p)(void *);


const struct vnodeopv_entry_desc egfs_vnodeop_entries[] = {


{ &vop_default_desc, vn_default_error },


{ &vop_lookup_desc, egfs_lookup },


{ &vop_create_desc, egfs_create },


{ &vop_mknod_desc, egfs_mknod },


{ &vop_open_desc, egfs_open },


{ &vop_close_desc, egfs_close },


{ &vop_access_desc, egfs_access },


{ &vop_getattr_desc, egfs_getattr },


{ &vop_setattr_desc, egfs_setattr },


{ &vop_read_desc, egfs_read },


{ &vop_write_desc, egfs_write },


{ &vop_ioctl_desc, egfs_ioctl },


{ &vop_fcntl_desc, egfs_fcntl },


{ &vop_poll_desc, egfs_poll },


{ &vop_kqfilter_desc, egfs_kqfilter },


{ &vop_revoke_desc, egfs_revoke },


{ &vop_mmap_desc, egfs_mmap },


{ &vop_fsync_desc, egfs_fsync },


{ &vop_seek_desc, egfs_seek },


{ &vop_remove_desc, egfs_remove },


{ &vop_link_desc, egfs_link },


{ &vop_rename_desc, egfs_rename },


{ &vop_mkdir_desc, egfs_mkdir },


{ &vop_rmdir_desc, egfs_rmdir },


{ &vop_symlink_desc, egfs_symlink },


{ &vop_readdir_desc, egfs_readdir },


{ &vop_readlink_desc, egfs_readlink },


{ &vop_abortop_desc, egfs_abortop },


{ &vop_inactive_desc, egfs_inactive },


{ &vop_reclaim_desc, egfs_reclaim },


{ &vop_lock_desc, egfs_lock },


{ &vop_unlock_desc, egfs_unlock },


{ &vop_bmap_desc, egfs_bmap },


{ &vop_strategy_desc, egfs_strategy },


{ &vop_print_desc, egfs_print },


{ &vop_islocked_desc, egfs_islocked },


{ &vop_pathconf_desc, egfs_pathconf },


{ &vop_advlock_desc, egfs_advlock },


35







Chapter 2 File system internals


{ &vop_blkatoff_desc, egfs_blkatoff },


{ &vop_valloc_desc, egfs_valloc },


{ &vop_reallocblks_desc, egfs_reallocblks },


{ &vop_vfree_desc, egfs_vfree },


{ &vop_truncate_desc, egfs_truncate },


{ &vop_update_desc, egfs_update },


{ &vop_bwrite_desc, egfs_bwrite },


{ &vop_getpages_desc, egfs_getpages },


{ &vop_putpages_desc, egfs_putpages },


{ NULL, NULL }


};


const struct vnodeopv_desc egfs_vnodeop_opv_desc =


{ &egfs_vnodeop_p, egfs_vnodeop_entries };


8. Create a minimal src/sys/fs/egfs/egfs_vfsops.c file that contains stubs for all VFS


operations.


#include <sys/cdefs.h>


__KERNEL_RCSID(0, "$NetBSD: chap-file-system.xml,v 1.6 2017/01/10 11:30:31 ryoon Exp $");


#include <sys/param.h>


#include <sys/mount.h>


static int egfs_mount(struct mount *, const char *, void *,


struct nameidata *, struct proc *);


static int egfs_start(struct mount *, int, struct proc *);


static int egfs_unmount(struct mount *, int, struct proc *);


static int egfs_root(struct mount *, struct vnode **);


static int egfs_quotactl(struct mount *, int, uid_t, void *,


struct proc *);


static int egfs_vget(struct mount *, ino_t, struct vnode **);


static int egfs_fhtovp(struct mount *, struct fid *, struct vnode **);


static int egfs_vptofh(struct vnode *, struct fid *);


static int egfs_statvfs(struct mount *, struct statvfs *, struct proc *);


static int egfs_sync(struct mount *, int, struct ucred *, struct proc *);


static void egfs_init(void);


static void egfs_done(void);


static int egfs_checkexp(struct mount *, struct mbuf *, int *,


struct ucred **);


static int egfs_snapshot(struct mount *, struct vnode *,


struct timespec *);


extern const struct vnodeopv_desc egfs_vnodeop_opv_desc;


const struct vnodeopv_desc * const egfs_vnodeopv_descs[] = {


&egfs_vnodeop_opv_desc,


NULL,


};


struct vfsops egfs_vfsops = {


MOUNT_EGFS,


egfs_mount,


egfs_start,


egfs_unmount,


36







Chapter 2 File system internals


egfs_root,


egfs_quotactl,


egfs_statvfs,


egfs_sync,


egfs_vget,


egfs_fhtovp,


egfs_vptofh,


egfs_init,


NULL, /* vfs_reinit: not yet (optional) */


egfs_done,


NULL, /* vfs_wassysctl: deprecated */


NULL, /* vfs_mountroot: not yet (optional) */


egfs_checkexp,


egfs_snapshot,


vfs_stdextattrctl,


egfs_vnodeopv_descs


};


VFS_ATTACH(egfs_vfsops);


static int


egfs_mount(struct mount *mp, const char *path, void *data,


struct nameidata *ndp, struct proc *p)


{


return EOPNOTSUPP;


}


static int


egfs_start(struct mount *mp, int, struct proc *p)


{


return EOPNOTSUPP;


}


static int


egfs_unmount(struct mount *mp, int, struct proc *p)


{


return EOPNOTSUPP;


}


static int


egfs_root(struct mount *mp, struct vnode **vpp)


{


return EOPNOTSUPP;


}


static int


egfs_quotactl(struct mount *mp, int cmd, uid_t uid, void *arg,


struct proc *p)


{


37







Chapter 2 File system internals


return EOPNOTSUPP;


}


static int


egfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)


{


return EOPNOTSUPP;


}


static int


egfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)


{


return EOPNOTSUPP;


}


static int


egfs_vptofh(struct vnode *mp, struct fid *fhp)


{


return EOPNOTSUPP;


}


static int


egfs_statvfs(struct mount *mp, struct statvfs *sbp, struct proc *p)


{


return EOPNOTSUPP;


}


static int


egfs_sync(struct mount *mp, int waitfor, struct ucred *uc, struct proc *p)


{


return EOPNOTSUPP;


}


static void


egfs_init(void)


{


return EOPNOTSUPP;


}


static void


egfs_done(void)


{


return EOPNOTSUPP;


}


static int


38







Chapter 2 File system internals


egfs_checkexp(struct mount *mp, struct mbuf *mb, int * wh,


struct ucred **anon)


{


return EOPNOTSUPP;


}


static int


egfs_snapshot(struct mount *mp, struct vnode *vp, struct timespec *ctime)


{


return EOPNOTSUPP;


}


9. Define a new malloc type for the file system and modify the egfs_init and egfs_done hooks to


attach and detach it in the LKM case.


See Section 2.5.


10. Create the src/sys/fs/egfs/egfs.h file, that will define all the structures needed for our file


system.


#if !defined(_EGFS_H_)


# define _EGFS_H_


#else


# error "egfs.h cannot be included multiple times."


#endif


#if defined(_KERNEL)


struct egfs_mount {


...


};


struct egfs_node {


...


};


#endif /* defined(_KERNEL) */


#define EGFS_ARGSVERSION 1


struct egfs_args {


char *ea_fspec;


int ea_version;


...


};


11. Create the src/sbin/mount_egfs directory.


12. Create a simple src/sbin/mount_egfs/Makefile file:


.include <bsd.own.mk>


PROG= mount_egfs


39







Chapter 2 File system internals


SRCS= mount_egfs.c


MAN= mount_egfs.8


CPPFLAGS+= -I${NETBSDSRCDIR}/sys


WARNS= 4


.include <bsd.prog.mk>


13. Create a simple src/sbin/mount_egfs/mount_egfs.c program that calls the mount(2) system


call.


XXX: Add an example or link to the corresponding section.


14. Create an empty src/sbin/mount_egfs/mount_egfs.8manual page. Details left out from this


guide.


15. Fill in the egfs_mount and egfs_unmount functions.


See Section 2.6.


16. Fill in the egfs_statvfs function. Return correct data if possible at this point or leave it for a later


step.


17. Set the vop_fsync, vop_bwrite and vop_putpages operations to genfs_nullop. These need


to be defined and return successfully to avoid crashes during sync(2) and mount(2). We will fill them


in at a later stage.


18. Set the vop_abortop operation to genfs_abortop.


19. Set the locking operations to genfs_lock, genfs_unlock and genfs_islocked. You will most


likely need locking, so it is better if you get it right from the beginning.


See Section 2.8.5.


20. Implement the vop_reclaim and vop_inactive operations to correctly destroy vnodes.


See Section 2.8.4.


21. Fill in the egfs_sync function. In case you do not know what do put in it, just return success


(zero); otherwise, serious problems will arise because it will be impossible for the operating system


to flush your file system.


22. Fill in the egfs_root function. Assuming you already read the file system’s root node from disk (or


whichever backing store you use) and have it in memory, simply allocate and lock a vnode for it.


See Section 2.8.3.


int


egfs_root(struct mount *mp, struct vnode **vpp)


{


return egfs_alloc_vp(mp, ((struct egfs_mount *)mp)->em_root, vpp);


}


23. Improve the mount utility to support standard options (see getmntopts(3)) and possibly some file


system specific options too.


24. Implement the egfs_getattr and egfs_setattr functions operations. As a side effect,


implement egfs_update and egfs_sync too. For the latter, you only need an stub that returns


success for now.


40







Chapter 2 File system internals


See Section 2.11.6.


25. Implement the egfs_access operation.


See Section 2.11.8.


26. Implement the egfs_print function. This is trivial, as all it has to do is dump vnode information


(its attributes, mostly) on screen, but it will help with debugging.


See Section 2.11.8.


27. Implement a simple egfs_lookup function that can locate any given file; be careful to conform


with the locking protocol described in vnodeops(9), as this part is really tricky. At this point, you can


forget about the lookup hints (CREATE, DELETE or RENAME); you will add them when needed.


See Section 2.10.


28. Implement the egfs_open function. In the general case, this one only needs to verify that the open


mode is correct against the file flags.


int


egfs_open(void *v)


{


struct vnode *vp = ((struct vop_open_args *)v)->a_vp;


int mode = ((struct vop_open_args *)v)->a_mode;


struct egfs_node *node;


node = (struct egfs_node *)vp->v_data;


if (node->en_flags & APPEND &&


mode & (FWRITE | O_APPEND)) == FWRITE)


return EPERM;


return 0;


}


29. Implement the egfs_close function. In the general case, this one needs to do nothing aside


returning success.


30. Implement the egfs_readdir operation so that you can start interacting with your file system.


After you add this function, you should be able to list any directory in it, and check that the files’


attributes are shown correctly. And most likely, you will start seeing bugs ;-)


See Section 2.13.3.


31. Implement the egfs_mkdir operation. You may need to modify the egfs_lookup function to


honour the CREATE hint.


See Section 2.10.3.


32. Implement the egfs_rmdir operation. You may need to modify the egfs_lookup function to


honour the DELETE hint. Note that adding an operation that removes stuff from the file system is


tricky; problems will certainly pop up if you have got bugs in your vnode allocation code or in the


egfs_inactive or egfs_reclaim functions.


See Section 2.10.3 and Section 2.8.4.


33. Implement the egfs_create operation to create regular files (VREG) and local sockets (VSOCK) .


41







Chapter 2 File system internals


34. Implement the egfs_remove operation to delete files.


35. Implement the egfs_link operation to create hard links. Be sure to control the file’s hard link


count correctly.


36. Implement the egfs_rename operation. This one may seem complex due to the amount of


arguments it takes, but it is not so difficult to implement. Just keep in mind that it has to manage


renames as well as moves and in which situation they happen.


37. Implement the egfs_read and egfs_write operations. These are quite simple thanks to the


indirection provided by the vnode’s UVM object.


See Section 2.11.5.


38. Redirect the egfs_getpages and egfs_putpages to genfs_getpages and genfs_putpages


respectively. Should be enough for most file systems.


See Section 2.11.5.2.


39. Implement the egfs_bmap and egfs_strategy operations.


See Section 2.11.5.5.


40. Implement the egfs_truncate operation.


41. Redirect the egfs_fcntl, egfs_ioctl, egfs_poll, egfs_revoke and egfs_mmap operations


to their corresponding ones in genfs. Should be enough for most-filesystems; note that even FFS


does this.


42. Implement the egfs_pathconf operation. This one is trivial, although the documentation in


pathconf(2) and vnodeops(9) is a bit inconsistent.


int


egfs_pathconf(void *v)


{


int name = ((struct vop_pathconf_args *)v)->a_name;


register_t *retval = ((struct vop_pathconf_args *)v)->a_retval;


int error;


switch (name) {


case _PC_LINK_MAX:


*retval = LINK_MAX;


break;


case ...:


...


}


return 0;


}


43. Implement the egfs_symlink and egfs_readlink operations to manage symbolic links.


See Section 2.12.


44. Implement the egfs_mknod operation, which adds support for named pipes and special devices.


See Section 2.14.


42







Chapter 2 File system internals


45. Add NFS support. This basically means implementing the egfs_vptofh, egfs_checkexp and


egfs_fhtovp VFS operations.


See Section 2.15.


Notes


1. Technically speaking, a mount point needn’t be a directory as you can NFS-mount regular files; the


mount point could be a regular file, but this restriction is deliberately imposed because otherwise, the


system could run out of name space quickly.


43







Chapter 3


Processes and threads


This chapter describe processes and threads in NetBSD. This includes process startup, traps and system


calls, process and thread creation and termination, signal delivery, and thread scheduling.


CAUTION! This chapter is an ongoing work: it has not been reviewed yet, neither for typos, nor for


technical mistakes


3.1 Process startup


3.1.1 execve usage


On Unix systems, new programs are started using the execve system call. If successful, execve


replaces the currently-executing program by a new one. This is done within the same process, by


reinitializing the whole virtual memory mapping and loading the new program binary in memory. All the


process’s threads (except for the calling one) are terminated, and the calling thread CPU context is reset


for executing the new program startup.


Here is execve prototype:


int execve(const char *path, char *const argv[], char *const envp[]);


path is the filesystem path to the new executable. argv and envp are two NULL-terminated string


arrays that hold the new program arguments and environment variables. execve is responsible for


copying the arrays to the new process stack.


3.1.2 Overview of in-kernel execve code path


Here is the top-down modular diagram for execve implementation in the NetBSD kernel when


executing a native 32 bit ELF binary on an i386 machine:


• src/sys/kern/kern_exec.c: sys_execve


• src/sys/kern/kern_exec.c: execve1


• src/sys/kern/kern_exec.c: check_exec


• src/sys/kern/kern_verifiedexec.c: veriexec_verify


• src/sys/kern/kern_conf.c: *execsw[]->es_makecmds


• src/sys/kern/exec_elf32.c: exec_elf_makecmds


44







Chapter 3 Processes and threads


• src/sys/kern/exec_elf32.c: exec_check_header


• src/sys/kern/exec_elf32.c: exec_read_from


• src/sys/kern/exec_conf.c: *execsw[]->u.elf_probe_func


• src/sys/kern/exec_elf32.c: netbsd_elf_probe


• src/sys/kern/exec_elf32.c: elf_load_psection


• src/sys/kern/exec_elf32.c: elf_load_file


• src/sys/kern/exec_conf.c: *execsw[]->es_setup_stack


• src/sys/kern/exec_subr.c: exec_setup_stack


• *fetch_element


• src/sys/kern/kern_exec.c: execve_fetch_element


• *vcp->ev_proc


• src/sys/kern/exec_subr.c: vmcmd_map_zero


• src/sys/kern/exec_subr.c: vmcmd_map_pagedvn


• src/sys/kern/exec_subr.c: vmcmd_map_readvn


• src/sys/kern/exec_subr.c: vmcmd_readvn


• src/sys/kern/exec_conf.c: *execsw[]->es_copyargs


• src/sys/kern/kern_exec.c: copyargs


• src/sys/kern/kern_clock.c: stopprofclock


• src/sys/kern/kern_descrip.c: fdcloseexec


• src/sys/kern/kern_sig.c: execsigs


• src/sys/kern/kern_ras.c: ras_purgeall


• src/sys/kern/exec_subr.c: doexechooks


• src/sys/sys/event.h: KNOTE


• src/sys/kern/kern_event.c: knote


• src/sys/kern/exec_conf.c: *execsw[]->es_setregs


• src/sys/arch/i386/i386/machdep.c: setregs


45







Chapter 3 Processes and threads


• src/sys/kern/kern_exec.c: exec_sigcode_map


• src/sys/kern/kern_exec.c: *p->p_emul->e_proc_exit (NULL)


• src/sys/kern/kern_exec.c: *p->p_emul->e_proc_exec (NULL)


execve calls execve1 with a pointer to a function called fetch_element, responsible for loading


program arguments and environment variables in kernel space. The primary reason for this abstraction


function is to allow fetching pointers from a 32 bit process on a 64 bit system.


execve1 uses a variable of type struct exec_package (defined in src/sys/sys/exec.h) to share


information with the called functions.


The makecmds is responsible for checking if the program can be loaded, and to build a set of virtual


memory commands (vmcmd’s) that can be used later to setup the virtual memory space and to load the


program code and data sections. The set of vmcmd’s is stored in the ep_vmcmds field of the exec


package. The use of these vmcmd set allows cancellation of the execution process before a commitment


point.


3.1.3 Multiple executable format support with the exec switch


The exec switch is an array of structure struct execsw defined in src/sys/kern/exec_conf.c:


execsw[]. The struct execsw itself is defined in src/sys/sys/exec.h.


Each entry in the exec switch is written for a given executable format and a given kernel ABI. It contains


test methods to check if a binary fits the format and ABI, and the methods to load it and start it up if it


does. One can find here various methods called within execve code path.


Table 3-1. struct execsw fields summary


Field name Description


es_hdrsz The size of the executable format header


es_makecmds A method that checks if the program can be


executed, and if it does, create the vmcmds


required to setup the virtual memory space (this


includes loading the executable code and data


sections).


u.elf_probe_func u.ecoff_probe_func


u.macho_probe_func


Executable probe method, used by the


es_makecmds method to check if the binary can


be executed. The u field is an union that contains


probe methods for ELF, ECOFF and Mach-O


formats


es_emul The struct emul used for handling different kernel


ABI. It is covered in detail in Section 3.2.2.


46







Chapter 3 Processes and threads


Field name Description


es_prio A priority level for this exec switch entry. This


field helps choosing the test order for exec switch


entries


es_arglen XXX ?


es_copyargs Method used to copy the new program arguments


and environment function in user space


es_setregs Machine-dependent method used to set up the


initial process CPU registers


es_coredump Method used to produce a core from the process


es_setup_stack Method called by es_makecmds to produce a set


of vmcmd for setting up the new process stack.


execve1 iterate on the exec switch entries, using the es_priority for ordering, and calls the


es_makecmds method of each entry until it gets a match.


The es_makecmds will fill the exec package’s ep_vmcmds field with vmcmds that will be used later for


setting up the new process virtual memory space. See Section 3.1.3.2 for details about the vmcmds.


3.1.3.1 Executable format probe


The executable format probe is called by the es_makecmds method. Its job is simply to check if the


executable binary can be handled by this exec switch entry. It can check a signature in the binary (e.g.:


ELF note section), the name of a dynamic linker embedded in the binary, and so on.


Some probe functions feature wildcard, and will be used as last resort, with the help of the es_prio


field. This is the case of the native ELF 32 bit entry, for instance.


3.1.3.2 Virtual memory space setup commands (vmcmds)


Vmcmds are stored in an array of struct exec_vmcmd (defined in src/sys/sys/exec.h) in the


ep_vmcmds field of the exec package, before execve1 decides to execute or destroy them.


struct exec_vmcmd defines, in the ev_proc field, a pointer to the method that will perform the


command, The other fields are used to store the method’s arguments.


Four methods are available in src/sys/kern/exec_subr.c


Table 3-2. vmcmd methods


Name Description


vmcmd_map_pagedvn Map memory from a vnode. Appropriate for


handling demand-paged text and data segments.


vmcmd_map_readvn Read memory from a vnode. Appropriate for


handling non-demand-paged text/data segments,


i.e. impure objects (a la OMAGIC and NMAGIC).


vmcmd_readvn XXX ?


vmcmd_zero Maps a region of zero-filled memory


47







Chapter 3 Processes and threads


Vmcmd are created using new_vmcmd, and can be destroyed using kill_vmcmd.


3.1.3.3 Stack virtual memory space setup


The es_setup_stack field of the exec switch holds a pointer to the method in charge of generating the


vmcmd for setting up the stack space. Filling the stack with arguments and environment is done later, by


the es_copyargs method.


For native ELF binaries, the netbsd32_elf32_copyargs (obtained by a macro from elf_copyargs


method in src/sys/kern/exec_elf32.c) is used. It calls the copyargs (from


src/sys/kern/kern_exec.c) for the part of the job which is not specific to ELF.


copyargs has to copy back the arguments and environment string from the kernel copy (in the exec


package) to the new process stack in userland. Then the arrays of pointers to the strings are


reconstructed, and finally, the pointers to the array, and the argument count, are copied to the top of the


stack. The new program stack pointer will be set to point to the argument count, followed by the


argument array pointer, as expected by any ANSI program.


Dynamic ELF executable are special: they need a structure called the ELF auxiliary table to be copied on


the stack. The table is an array of pairs of key and values for various things such as the ELF header


address in user memory, the page size, or the entry point of the ELF executable


Note that when starting a dynamic ELF executable, the ELF loader (also known as the interpreter:


/usr/libexec/ld.elf_so) is loaded with the executable by the kernel. The ELF loader is started by


the kernel and is responsible for starting the executable itself afterwards.


3.1.3.4 Initial register setup


es_setregs is a machine dependent method responsible for setting up the initial process CPU registers.


On any machine, the method will have to set the registers holding the instruction pointer, the stack


pointer and the machine state. Some ports will need more work (for instance i386 will set up the segment


registers, and Local Descriptor Table)


The CPU registers are stored in a struct trapframe, available from struct lwp.


3.1.3.5 Return to userland


After execve has finished his work, the new process is ready for running. It is available in the run queue


and it will be picked up by the scheduler when appropriate.


From the scheduler point of view, starting or resuming a process execution is the same operation:


returning to userland. This involves switching to the process virtual memory space, and loading the


process CPU registers. By loading the machine state register with the system bit off, kernel privileges are


dropped.


XXX details


48







Chapter 3 Processes and threads


3.2 Traps and system calls


When the processor encounter an exception (memory fault, division by zero, system call instruction...), it


executes a trap: control is transferred to the kernel, and after some assembly routine in locore.S, the


CPU drops in the syscall_plain (from src/sys/arch/i386/i386/syscall.c on i386) for


system calls, or in the trap function (from src/sys/arch/i386/i386/trap.c on i386) for other


traps.


There is also a syscall_fancy system call handler which is only used when the process is being traced


by ktrace.


3.2.1 Traps


XXX write me


3.2.2 Multiple kernel ABI support with the emul switch


The struct emul is defined in src/sys/sys/proc.h. It defines various methods and parameters to


handle system calls and traps. Each kernel ABI supported by the NetBSD kernel has its own struct emul.


For instance, Linux ABI defines emul_linux in src/sys/compat/linux/common/linux_exec.c,


and the native ABI defines emul_netbsd, in src/sys/kern/kern_exec.c.


The struct emul for the current ABI is obtained from the es_emul field of the exec switch entry that was


selected by execve. The kernel holds a pointer to it in the process’ struct proc (defined in


src/sys/sys/proc.h).


Most importantly, the struct emul defines the system call handler function, and the system call table.


3.2.3 The syscalls.master table


Each kernel ABI have a system call table. The table maps system call numbers to functions


implementing the system call in the kernel (e.g.: system call number 2 is fork). The convention (for


native syscalls) is that the kernel function implementing syscall foo is called sys_foo. Emulation


syscalls have their own conventions, like linux_sys_ prefix for the Linux emulation. The native system


call table can be found in src/sys/kern/syscalls.master.


This file is not written in C language. After any change, it must be processed by the Makefile available


in the same directory. syscalls.master processing is controlled by the configuration found in


syscalls.conf, and it will output several files:


Table 3-3. Files produced from syscalls.master


File name Description


syscallargs.h Define the system call arguments structures, used


to pass data from the system call handler function


to the function implementing the system call.


syscalls.c An array of strings containing the names for the


system calls


49







Chapter 3 Processes and threads


File name Description


syscall.h Preprocessor defines for each system call name


and number — used in libc


sysent.c An array containing for each system call an entry


with the number of arguments, the size of the


system call arguments structure, and a pointer to


the function that implements the system call in the


kernel


In order to avoid namespace collision, non native ABI have syscalls.conf defining output file names


prefixed by tags (e.g: linux_ for Linux ABI).


system call argument structures (syscallarg for short) are always used to pass arguments to functions


implementing the system calls. Each system call has its own syscallarg structure. This encapsulation


layer is here to hide endianness differences.


All functions implementing system calls have the same prototype:


int syscall(struct lwp *l, void * v, register_t *retval);


l is the struct lwp for the calling thread, v is the syscallarg structure pointer, and retval is a pointer to


the return value. The function returns the error code (see errno(2)) or 0 if there was no error. Note that


the prototype is not the same as the “declaration” in syscalls.master. The declaration in


syscalls.master corresponds to the documented prototype for the system call. This is because


system calls as seen from userland programs have different prototypes, but the sys_... kernel functions


implementing them must have the same prototype to unify the interface between MD syscall handlers


and MI syscall implementation. In syscalls.master, the declaration shows the syscall arguments as


seen by userland and determines the members of the syscallarg structure, which encapsulates the syscall


arguments and has one member for each one.


While generating the files listed above some substitutions on the function name are performed: the


syscalls tagged as COMPAT_XX are prefixed by compat_xx_, same for the syscallarg structure name. So


the actual kernel function implementing those syscalls have to be defined in a corresponding way.


Example: if syscalls.master has a line


97 COMPAT_30 { int sys_socket(int domain, int type, int protocol); }


the actual syscall function will have this prototype:


int compat_30_sys_socket(struct lwp *l, void * v, register_t *retval);


and v is a pointer to struct compat_30_sys_socket_args, whose declaration is the following:


struct compat_30_sys_socket_args {


syscallarg(int) domain;


syscallarg(int) type;


syscallarg(int) protocol;


};


50







Chapter 3 Processes and threads


Note the correspondence with the documented prototype of the socket(2) syscall and the declaration of


sys_socket in syscalls.master. The types of syscall arguments are wrapped by syscallarg


macro, which ensures that the structure members will be padded to a minimum size, again for unified


interface between MD and MI code. That’s why those members should not be accessed directly, but by


the SCARG macro, which takes a pointer to the syscall arg structure and the argument name and extracts


the argument’s value. See below (#syscall_howto) for an example.


3.2.4 System call implementation in libc


The system call implementation in libc is autogenerated from the kernel implementation. As an example,


let’s examine the implementation of the access(2) function in libc. It can be found in the access.S file,


which does not exist in the sources — it is autogenerated when libc is built. It uses macros defined in


src/sys/sys/syscall.h and src/lib/libc/arch/MACHINE_ARCH/SYS.h: the syscall.h file


contains defines which map the syscall names to syscall numbers. The syscall function names are


changed by replacing the sys_ prefix by SYS_. The syscall.h header file is also autogenerated from


src/sys/kern/syscalls.master by running make init_sysent.c in src/sys/kern, as described


above. By including SYS.h, we get syscall.h and the RSYSCALL macro, which accepts the syscall


name, automatically adds the SYS_ prefix, takes the corresponding number, and defines a function of the


name given whose body is just the execution of the syscall itself with the right number. (The method of


execution and of transfer of the syscall number and its arguments are machine dependent, but this is


hidden in the RSYSCALL macro.)


To continue the example of access(2), syscall.h contains


#define SYS_access 33


so


RSYSCALL(access)


will result in defining the function access, which will execute the syscall with number 33. Thus,


access.S needs to contain just:


#include "SYS.h"


RSYSCALL(access)


To automate this further, it is enough to add the name of this file to the ASM variable in


src/lib/libc/sys/Makefile.inc and the file will be autogenerated with this content when libc is


built.


The above is true for libc functions which correspond exactly to the kernel syscalls. It is not always the


case, even if the functions are found in section 2 of the manuals. For example the wait(2), wait3(2) and


waitpid(2) functions are implemented as wrappers of only one syscall, wait4(2). In such case the


procedure above yields the wait4 function and the wrappers can reference it as if it were a normal C


function.


51







Chapter 3 Processes and threads


3.2.5 How to add a new system call


Let’s pretend that the access(2) syscall does not exist yet and you want to add it to the kernel. How to


proceed?


• add the syscall to the src/sys/kern/syscalls.master list:


33 STD { int sys_access(const char *path, int flags); }


• Run make init_sysent.c under src/sys/kern. This will update the autogenerated files:


syscallargs.h, syscall.h, init_sysent.c and syscalls.c.


• Implement the kernel part of the system call, which will have the prototype:


int sys_access(struct lwp *l, void * v, register_t *retval);


as all other syscalls. To get the syscall arguments cast v to a pointer to struct sys_access_args and use


the SCARG macro to retrieve them from that structure. For example, to get the flags argument if uap


is a pointer to struct sys_access_args obtained by casting v, use:


SCARG(uap, flags)


The type struct sys_access_args and the function sys_access are declared in sys/syscallargs.h,


which is autogenerated from src/sys/kern/syscalls.master. Use


#include <sys/syscallargs.h>


to get those declarations.


Look in src/sys/kern/vfs_syscalls.c for the real implementation of sys_access.


• Run make includes in src/sys/sys. This will copy the autogenerated include files (most


importantly, syscall.h) to usr/include under DESTDIR, where libc build will find them in the


next steps.


• Add access.S to the ASM variable in src/lib/libc/sys/Makefile.inc.


This is all. To test the new syscall, simply rebuild libc (access.S will be generated at his point) and


reboot with a new kernel containing the new syscall. To make the new syscall generally useful, its


prototype should be added to an appropriate header file for use by userspace programs — in the case of


access(2), this is unistd.h, which is found in the NetBSD sources at src/include/unistd.h.


3.2.6 Versioning a system call


If the system call ABI (or even API) changes, it is necessary to implement the old syscall with the


original semantics to be used by old binaries. The new version of the syscall has a different syscall


number, while the original one retains the old number. This is called versioning.


The naming conventions associated with versioning are complex. If the original system call is called foo


(and implemented by a sys_foo function) and it is changed after the x.y release, the new syscall will be


named __fooxy, with the function implementing it being named sys___fooxy. The original syscall


(left for compatibility) will be still declared as sys_foo in syscalls.master, but will be tagged as


COMPAT_XY, so the function will be named compat_xy_sys_foo. We will call sys_foo the original


version, sys___fooxy the new version and compat_xy_sys_foo the compatibility version in the


procedure described below.


52







Chapter 3 Processes and threads


Now if the syscall is versioned again after version z.q has been released, the newest version will be called


__foozq. The intermediate version (formerly the new version) will have to be retained for compatibility,


so it will be tagged as COMPAT_ZQ, which will change the function name from sys___fooxy to


compat_zq_sys___fooxy. The oldest version compat_xy_sys_foo will be unaffected by the second


versioning.


HOW TO change a system call ABI or API and add a compatibility version? Let’s look at a real


example: versioning of the socket(2) system call after the error code in case of unsupported address


family changed from EPROTONOSUPPORT to EAFNOSUPPORT between NetBSD 3.0 and 4.0.


• tag the old version (sys_socket) with the right COMPAT_XY in syscalls.master. In the case of


sys_socket, it is COMPAT_30, because NetBSD 3.0 was the last version before the system call


changed.


• add the new version at the end of syscalls.master (this effectively allocates a new syscall


number). Name the new version as described above. In our case, it will be sys___socket30:


394 STD { int sys___socket30(int domain, int type, int protocol); }


• The function implementing the socket syscall now needs to be renamed from sys_socket to


sys___socket30 to match the change above. Ideally, at this moment the change which requires


versioning would be made. (Though in practice it happens that a change is made and only later it is


realized that it breaks compatibility and versioning is needed.)


• Implement the compatibility version, name it compat_xy_sys_... as described above. The


implementation belongs under src/sys/compat and it shouldn’t be a modified copy of the new


version, because the copies would eventually diverge. Rather, it should be implemented in terms of the


new version, adding the adjustments needed for compatibility (which means that it should behave


exactly as the old version did.)


In our example, the compatibility version would be named compat_30_sys_socket. It can be found


in src/sys/compat/common/uipc_syscalls_30.c.


• Find all references to the old syscall function in the kernel and point them to the compatibility version


or to the new version as appropriate. (The kernel would not link otherwise.) For example, many of the


compatibility syscalls or the syscalls.master tables for various emulations under


src/sys/compat used to refer to sys_socket. Decision if the references should be changed to the


compatibility version or to the new version depend on the behavior of the OS that we intend to


emulate. E.g. FreeBSD uses the old error number, while System V uses the new one.


Now the kernel should be compilable and old statically linked binaries should work, as should binaries


using the old libc. Nothing uses the new syscall yet. We have to make a new libc, which will contain both


the new and the compatibility syscall:


• in src/lib/libc/sys/Makefile.inc, replace the name of the old syscall by the new syscall


(__socket30 in our example). When libc is rebuilt, it will contain the new function, but no programs


use this internal name with underscore, so it is not useful yet. Also, we have lost the old name.


• To make newly compiled programs use the new syscall when they refer to the usual name (socket in


our example), we add a __RENAME(newname) statement after the declaration of the usual name is


declared. In the case of socket, this is src/sys/sys/socket.h:


int socket(int, int, int)


#if !defined(__LIBC12_SOURCE__) && !defined(_STANDALONE)


53







Chapter 3 Processes and threads


__RENAME(__socket30)


#endif


Now, when a program is recompiled using this header, references to socket will be replaced by


__socket30, except for compilation of standalone tools (basically bootloaders), which define


_STANDALONE, and libc compat code itself, which defines __LIBC12_SOURCE__. The __RENAME


causes the compiler to emit references to the __socket30 symbol when socket is used in the source.


The symbol will be then resolved by the linker to the new function (implemented by the new system


call). Old binaries are unaware of this and continue to reference socket, which should be resolved to


the old function (having the same API as before the change). We will re-add the old function in the


next step.


• To make the old binaries work with the new libc, we must add the old function. We add it under


src/lib/libc/compat/sys, implementing it using the new function. Note that we did not use the


compatibility syscall in the kernel at all, so old programs will work with the new libc, even if the


kernel is built without COMPAT_30. The compatibility syscall is there only for the old libc, which is


used if the shared library was not upgraded, or internally by statically linked programs.


We are done — we have covered the cases of old binaries, old libc and new kernel (including statically


linked binaries), old binaries, new libc and new kernel, and new binaries, new libc and new kernel.


3.2.7 Committing changes to syscall tables


When committing your work (either a new syscall or a new syscall version with the compatibility


syscalls), you should remember to commit the source (syscalls.master) for the autogenerated files


first, and then regenerate and commit the autogenerated files. They contain the RCS Id of the source file


and this way, the RCS Id will refer to the current source version. The assembly files generated by


src/lib/libc/sys/Makefile.inc are not kept in the repository at all, they are regenerated every


time libc is built.


3.2.8 Managing 32 bit system calls on 64 bit systems


When executing 32 bit binaries on a 64 bit system, care must be taken to only use addresses below 4 GB.


This is a problem at process creation, when the stack and heap are allocated, but also for each system


call, where 32 bits pointers handled by the 32 bit process are manipulated by the 64 bit kernel.


For a kernel built as a 64 bit binary, a 32 bit pointer is not something that makes sense: pointers can only


be 64 bit long. This is why 32 bit pointers are defined as an u_int32_t synonym called


netbsd32_pointer_t (in src/sys/compat/netbsd32/netbsd32.h).


For copyin and copyout, true 64 bits pointers are required. They are obtained by casting the


netbsd32_pointer_t through the NETBSD32PTR64 macro.


Most of the time, implementation of a 32 bit system call is just about casting pointers and to call the 64


version of the system call. An example of such a situation can be found in


src/sys/compat/netbsd32/netbsd32_time.c: netbsd32_timer_delete. Provided that the 32


bit system call argument structure pointer is called uap, and the 64 bit one is called ua, then helper


macros called NETBSD32TO64_UAP, NETBSD32TOP_UAP, NETBSD32TOX_UAP, and


NETBSD32TOX64_UAP can be used. Sources in src/sys/compat/netbsd32 provide multiple


examples.


54







Chapter 3 Processes and threads


3.3 Processes and threads creation


3.3.1 fork, clone, and pthread_create usage


XXX write me


3.3.2 Overview of fork code path


XXX write me


3.3.3 Overview of pthread_create code path


XXX write me


3.4 Processes and threads termination


3.4.1 exit, and pthread_exit usage


XXX write me


3.4.2 Overview of exit code path


XXX write me


3.4.3 Overview of pthread_exit code path


XXX write me


3.5 Signal delivery


3.5.1 Deciding what to do with a signal


XXX write me


3.5.2 The sendsig function


For each kernel ABI, struct emul defines a machine-dependent sendsig function, which is responsible


for altering the process user context so that it calls a signal handler.


55







Chapter 3 Processes and threads


sendsig builds a stack frame containing the CPU registers before the signal handler invocation. The


CPU registers are altered so that on return to userland, the process executes the signal handler and have


the stack pointer set to the new stack frame.


If requested at sigaction call time, sendsig will also add a struct siginfo to the stack frame.


Finally, sendsig may copy a small piece of assembly code (called a "signal trampoline") to perform


cleanup after handling the signal. This is detailed in the next section. Note that modern NetBSD native


programs do not use a trampoline anymore: it is only used for older programs, and emulation of other


operating systems.


3.5.3 Cleaning up state after signal handler execution


Once the signal handler returns, the kernel must destroy the signal handler context and restore the


previous process state. This can be achieved by two ways.


First method, using the kernel-provided signal trampoline: sendsig have copied the signal trampoline


on the stack and has prepared the stack and/or CPU registers so that the signal handler returns to the


signal trampoline. The job of the signal trampoline is to call the sigreturn or the setcontext system


calls, handling a pointer to the CPU registers saved on stack. This restores the CPU registers to their


values before the signal handler invocation, and next time the process will return to userland, it will


resume its execution where it stopped.


The native signal trampoline for i386 is called sigcode and can be found in


src/sys/arch/i386/i386/locore.S. Each emulated ABI has its own signal trampoline, which can


be quite close to the native one, except usually for the sigreturn system call number.


The second method is to use a signal trampoline provided by libc. This is how modern NetBSD native


programs do. At the time the sigaction system call is invoked, the libc stub handle a pointer to a signal


trampoline in libc, which is in charge of calling setcontext.


sendsig will use that pointer as the return address for the signal handler. This method is better than the


previous one, because it removes the need for an executable stack page where the signal trampoline is


stored. The trampoline is now stored in the code segment of libc. For instance, for i386, the signal


trampoline is named __sigtramp_siginfo_2 and can be found in


src/lib/libc/arch/i386/sys/__sigtramp2.S.


3.6 Thread scheduling


3.6.1 Overview


NetBSD 5.0 introduced a new scheduling API that allows for different scheduling algorithms to be


implemented and selected at compile-time. There are currently two different scheduling algorithms


available: The traditional 4.4BSD-based scheduler and the more modern M2 scheduler.


NetBSD supports the three scheduling policies required by POSIX in order to support the POSIX


real-time scheduling extensions:


• SCHED_OTHER: Time sharing (TS), the default on NetBSD


56







Chapter 3 Processes and threads


• SCHED_FIFO: First in, first out


• SCHED_RR: Round-robin


SCHED_FIFO and SCHED_RR are predefined scheduling policies, leaving SCHED_OTHER as an


implementation-specific policy.


Currently, there are 224 different priority levels with 64 being available for the user level. Scheduling


priorities are organized within the following classes:


Table 3-4. Scheduling priorities


Class Range # Levels Description


Kernel (RT) 192..223 32 Software interrupts.


User (RT) 128..191 64 Real-time user threads


(SCHED_FIFO and


SCHED_RR policies).


Kernel threads 96..127 32 Internal kernel threads


(kthreads), used by I/O,


VM and other kernel


subsystems.


Kernel 64..95 32 Kernel priority for user


processes/threads,


temporarily assigned


when entering


kernel-space and


blocking.


User (TS) 0..63 64 Time-sharing range,


user processes and


threads (SCHED_RR


policy)


Threads running with the SCHED_FIFO policy have a fixed priority, i.e. the kernel does not change their


priority dynamically. A SCHED_FIFO thread runs until


• completion


• voluntary yielding the CPU


• blocking on an I/O operation or other resources (memory allocation, locks)


• preemption by a higher priority real-time thread


SCHED_RR works similar to SCHED_FIFO, except that such threads have a default time-slice of


100ms.


For the SCHED_OTHER policy, both schedulers currently use the same run queue implementation,


employing multi-level feedback queues. By dynamically adjusting a thread’s priority to reflect its CPU


and resource utilization, this approach allows the system to be responsive even under heavy loads.


57







Chapter 3 Processes and threads


Each runnable thread is placed on one of the runqueues, according to its priority. Each thread is allowed


to run on the CPU for a certain amount of time, its time-slice or quantum. Once the thread has used up its


time-slice, it is placed on the back on its runqueue. When the scheduler searches for a new thread to run


on the CPU, the first thread of the highest priority, non-empty runqueue is selected.


3.6.1.1 The 4.4BSD Scheduler


The 4.4BSD scheduler adjusts a thread’s priority dynamically as it accumulates CPU-time. CPU


utilization is incremented in hardclock each time the system clock ticks and the thread is found to be


executing. An estimate of a thread’s recent CPU utilization is stored in l_estcpu, which is adjusted


once per second in schedcpu via a digital decay filter. Whenever a thread accumulates four ticks in its


CPU utilization, schedclock invokes resetpriority to recalculate the process’s scheduling priority.


3.6.1.2 The M2 scheduler


The M2 scheduler employs a traditional time-sharing approach similar to Unix System V Release 4 and


Solaris.


3.6.2 References


The common scheduler API is implemented within the file src/sys/kern/kern_synch.c. Additional


information can be found in csf(9). Generic run-queues are implemented in


src/sys/kern/kern_runq.c. Detailed information about the 4.4BSD scheduler is given in


[McKusick]. A description of the SVR4 scheduler is provided in [Goodheart].


58







Chapter 4


Networking


This chapter describes code modules related to core networking. It begins with a discussion on core


networking components: the routing code, sockets and mbufs. After this attention is given to the TCP/IP


suite. Information on services provided by the networking stack, including various pseudo devices, can


be found from the chapter on networking services .


This chapter describes only the involved interfaces and is meant to give an overview for people wishing


to work with the code. A line-by-line discussion on most parts of the networking subsystem can be found


from TCP/Illustrated, Vol2. It is still mostly accurate these days, and this chapter does not attempt to


rewrite what was already written.


4.1 Routing


The routing code controls the flow of all packets within the networking subsystem. It makes the decision


of where a packet with a given destination address should be sent next. The current routing table can be


dumped using the command netstat -r; going over the normal table contents may be beneficial for the


following discussion.


For example, in TCP/IP networking the routing module forwards the packets to the correct addresses and


is involved in choosing the network interface through which the packets should go. The decision whether


to send to an intermediate gateway or directly to the target is made here. And, finally, link layer lookups


are done, which in the case of Ethernet and IPv4 would be ARP.


One important concept in the routing subsystem is cloning routes. These routes are "cloned" to create a


more specific route each time they are resolved; copy-on-read if it makes any sense. A natural example is


an interface route to the local Ethernet. Any packet sent through this link will get a cloned route entry for


ARP resolution. This enables the caching of ARP responses without adding any explicit support for it on


the routing layer.


The routing code can be thought to consist of three separate entities. An overview will be given now and


a more dedicated discussion can be found later.


• The routing database backend is implemented in net/radix.c. As hinted by the name, the internal


structure is a radix tree.


• The route query and control interface is located in net/route.c. This module is accessed from


within the kernel and parameters are passed mainly using the struct route and the struct rtentry


structures.


• The routing socket interface is located in net/rtsock.c. It is used to control the routing table entries


from userspace and is accessed by opening a socket in the protocol family PF_ROUTE.


59







Chapter 4 Networking


It is good to keep in mind that routing control messages can come either from a process in the operating


system (user running /sbin/route, gated, etc.) or from the network (e.g. ICMP). This explains why


internally some portions are controlled and parameters passed using a fashion similar to what the routing


socket uses.


4.1.1 Network Routing DB Backend


This section describes the interface to the radix tree routing database. The actual internal operation of the


radix code is beyond the scope of this document and can be found, for example, in TCP/IP Illustrated


Vol2. Much of the complexity of this module is due to its aspiration to be as generic as possible and


adaptable to any networking domain.


A radix tree is accessed mostly through the member functions in struct radix_node_head (but there are


some exceptions). These function pointers are initialized after a radix tree is created with rn_inithead


called from each networking domain’s initialization routine. The head is then stored in the global array


rt_tables using the domain type as the indexing value.


As arguments the radix tree functions take void *’s, which point to a struct sockaddr type of data


structure. But since the radix tree layer treats the arguments as opaque data and a struct sockaddr


contains header data (such as the sockaddr family sa_family or, specific to IP, the port sin_port)


before the actual network address, each networking domain specifies a bit offset where the network


address is located. This offset is given in struct domain by dom_rtoffset and used when testing against


the supplied void *’s. Additionally, the radix tree expects to find the length of the structure underlying


the void * at the first byte of the provided argument. This also matches the (BSD) struct sockaddr layout.


Most of the interface methods are located in the struct radix_node_head accessible through rt_tables.


Theoretically the jump through the function pointer hoop is unnecessary, since the pointers are initialized


to the same values for all trees in net/radix.c. Not all of the members of the structure are ever used


and only the ones used are described here. Included in the description are also the ones not provided


through function pointers, but accessed directly. They can be differentiated by looking at the function


prefix: ones inside radix_node_head start with rnh, while directly accessed ones start with rn.


Table 4-1. struct radix_node_head interfaces


name description


rnh_addaddr Adds an entry with the given address and netmask to the database.


The storage space for the database structures is provided by the


caller as an argument (usually these are part of struct rtentry, as we


will see later). The route target is already prefilled into the storage


space by the caller.


rnh_deladdr Removes an address with a matching netmask from the given radix


database.


rnh_matchaddr Locate the entry in the database which provides the best match for


the given address. "Best match" is defined as the match having the


longest prefix of 1-bits in the netmask.


rnh_lookup Locate the most exact entry in the database for the given address


with the netmask of the entry matching the argument given.


60







Chapter 4 Networking


name description


rnh_walktree Walks the database calling the provided function for each entry. This


is useful e.g. for dumping the entire routing table or flushing routes


cloned from a certain parent entry.


rn_search Returns the leaf node found at the end of the bit comparisons. This


is either a match or the leaf in the the tree that should be backtracked


to find a match.


rn_refines Compares two netmasks and checks which one has more bits set, i.e.


which one is "more exact".


rn_addmask Enters the supplied netmask into the netmask tree.


4.1.2 Routing Interface


The route interface implemented in net/route.c is used by the kernel proper when it requires routing


services to discover where a packet should be sent to.


The argument passing to this modules revolves around, in addition to struct sockaddr and the radix


structures mentioned in the previous chapter, two structures: struct route and struct rtentry.


The structure struct route contains a struct rtentry in addition to a struct sockaddr signalling the


destination address for the route. The destination is decoupled from the routing information so that


multiple destinations could share the same route structure; think outgoing connections routed to the


gateway, for example.


The routing information itself is contained in struct rtentry defined in net/route.h. It consists of the


following fields:


Table 4-2. struct rtentry members


type name description


struct radix_node


[2]


rt_nodes radix tree glue


struct sockaddr * rt_gateway gateway address


int rt_flags flags


u_long rt_use number of times the route was used


struct ifnet * rt_ifp pointer to the interface structure of the route target


struct ifaddr * rt_ifa Pointer to the interface address of the route target. The


sockaddr behind this pointer can be for example of type


struct sockaddr_in or struct sockaddr_dl.


const struct


sockaddr *


rt_genmask Cloning mask for struct sockaddr.


caddr_t rt_llinfo Link level structure pointer. For example, this will point to


struct llinfo_arp for Ethernet.


61







Chapter 4 Networking


type name description


struct rt_metrics rt_rmx The route metrics used by routing protocols. This includes


information such as the path MTU and estimated RTT and


RTT variance.


struct rtentry * rt_gwroute In the case of a gateway route, this contains (after it is


resolved) the route to the gateway. For example, on


IP/Ethernet, the route containing the gateway IP address will


have a pointer to the gateway MAC address route here.


LIST_HEAD(,


rttimer)


rt_timer Misc. timers associated with a route. This queue is accessed


through the rt_timer* family of functions declared in


net/route.h.


struct rtentry * rt_parent The parent of a cloned route. This is used for cleanup when


the parent route is removed.


Routes can be queried through two different interfaces:


void rtalloc(struct route *ro);


struct rtentry *rtalloc1(const struct sockaddr *dst, int report);


The difference is that the former is a convenience function which skips the routing lookup in case the


rtentry contained within struct route already contains a route that is up. As an example, struct route is


included in struct inpcb to act as a route cache. It helps especially for TCP connections, where the


endpoint does not change and therefore the route remains the same.


The latter is used to lookup information from the routing database. The report parameter is overloaded


to control two operations: whether to create a routing socket message in case there is no route available


and whether to clone a route in case the resolved route is a cloning route (quite clearly both of these


conditions cannot be true during the same lookup, so the only possibility for ambiguity is for the


programmers).


After routing information (struct rtentry) is no longer needed, the routing entry is to be released using


rtfree. This takes care of appropriate reference counting and releasing the underlying data structures.


Notice that this does not delete a routing table entry, it merely releases a route entry created from a


routing table entry.


4.1.3 Routing Sockets


Routing sockets are used for controlling the routing table. The routing socket kernel portion is


implemented in the file net/rtsock.c.


While in BSD systems the routing code is within the kernel, the decisions on the routing table entries are


controlled from outside, usually from a userspace routing daemon. The routing socket (simply a socket


of type PF_ROUTE) enables the communication between the user and kernel portions. For simpler


systems, such as normal desktop machines with essentially the default gateway address being the only


routing information, the routing socket is used to set the gateway address. Smart routers will use this


interface for programs such as routed.


62







Chapter 4 Networking


The routing socket acts like any other socket: it is possible to write to it or read from it. Writing (from the


userland perspective) is handled by route_output, while data is transferred to userspace using the


raw_input call giving raw data and the routing socket addressing identifiers as the parameters.


The data passed through the routing socket is described by a structure called struct rt_msghdr, which is


declared in net/route.h. The message type field in the header identifies the type of activity taking


place, e.g. RTM_ADD means adding a new route and RTM_REDIRECT means redirecting an existing


route. In the latter case, the input comes from the network e.g. in the form of an ICMP packet.


The addresses involved with the routing messages are handled in a somewhat non-obvious way within


the file net/rtsock.c. They are passed as binary data in the message, read into a structure called struct


rt_addrinfo, and used like local variables throughout the file because of preprocessor magic such as the


following:


#define dst info.rti_info[RTAX_DST]


To be compatible with the routing socket and its propagation of information, networking subsystems


should support the rtrequest interface. It is called through the if_rtrequest member in struct


ifaddr. Examples include arp_rtrequest for Ethernet interfaces and llc_rtrequest in the OSI ISO


stack. Rtrequest methods handle the same requests as what are communicated via the routing socket


(RTM_ADD, RTM_DELETE, ...), but the actual routing socket message layout is handled within the


routing socket code.


4.2 Sockets


The Berkeley abstraction for a communication endpoint is called a socket. From the userspace


perspective, the handle to a socket is an integer, no different from any other descriptor. There are


differences, such as support for interface calls reserved only for sockets (getsockopt, setsockopt,


etc.), but on the basic level, the interface is the same.


However, under the hood things diverge quickly. The integer descriptor value is used to lookup the kernel


internal file descriptor structure, struct file, as usual. After this the socket data structure, struct socket is


found from the pointer f_data in struct file.


When discussing sockets it is important to remember that they were designed as an abstraction to the


underlying protocol layers.


4.2.1 Socket Data Structure


Inside the kernel, a socket’s information is contained within struct socket. This structure is not defined in


sys/socket.h, which mostly deals with the user-kernel interface, but rather in sys/socketvar.h.


Table 4-3. struct socket members


type name description


short so_type The generic socket type. Well-known examples are


SOCK_STREAM and SOCK_DGRAM


63







Chapter 4 Networking


type name description


short so_options socket options. Most of these, such as SO_REUSEADDR,


can be set using setsockopt. Others, such as


SO_ACCEPTCONN as set using other methods (in this case


calling listen)


short so_linger Time the socket lingers on after being closed. Used if


SO_LINGER is set. An example user is TCP.


short so_state internal socket state flags controlled by the kernel. Some,


however, are indirectly settable by userspace, for example


SS_ASYNC to deliver async I/O notifications.


const struct


protosw *


so_proto socket protocol handle. This is used to attach the socket to a


certain protocol, for example IP/UDP. The socket protocol


requests, such as PRU_USRREQ used for sending packets,


are accessed through this member. See also


section on socket protocol support.


short so_timeo connection timeout, not used except as a wakeup() address(?)


u_short so_error an error value. This field is used to store error values that


should be returned to socket routine callers once they are


executed/scheduled.


pid_t so_pgid the pgid use to identify the target for socket-related signal


delivery.


u_long so_oobmark counter to the oob mark


struct sockbuf so_snd, so_rcv Socket send and receive buffers, see section on socket buffers


for further information.


void (*so_upcall) so_upcall In-kernel upcall to make when a socket wakeup occurs. The


canonical example is nfs, which uses sockets from inside the


kernel for network request servicing.


caddr_t so_upcallarg argument to be passed so_upcall.


int (*so_send) so_send socket receive method. This is always currently sosend


(which eventually leads to so_proto’s PR_USRREQ), but


might change in the future.


int (*so_receive) so_receive socket receive method. Same holds as for so_send.


struct mowner * so_mowner owner of the mbuf’s for the socket, used to track mbufs other


than socket buffer mbufs. This can be used to debug mbuf


leaks. Available only when the kernel is compiled with


options MBUFTRACE.


struct uidinfo * so_uidinfo socket owner information. This is currently used to limit


socket buffer size.


Additionally, so_head, so_onq, so_q0, so_q, so_qe, so_qlen and so_qlimit are use to queue and


control incoming partial connections and handle aborts.


64







Chapter 4 Networking


4.2.2 Socket Buffers


The socket buffer plays a critical role in the operation of the networking subsystem. It is used to buffer


incoming data before it is read by the application and outgoing data before it can be sent to the network.


As noted above, a struct socket contains two socket buffers, one for each direction. A socket buffer is


described by struct sockbuf in sys/socketvar.h.


Table 4-4. struct sockbuf members


type name description


struct selinfo sb_sel Contains the information on which process (if any) wants to


know about changes in the socket, for example poll called


with POLLOUT on the socket.


struct mowner * sb_mowner Used to track owners of the socket buffer mbufs, tracking


enabled by options MBUFTRACE.


u_long sb_cc counter for octets in the buffer.


u_long sb_hiwat high water mark for the socket buffer


u_long sb_mbcnt bytes allocated as mbuf memory in the socket buffer. This is


the sum of regular mbufs and mbuf externals.


u_long sb_mbmax maximum amount of mbuf memory that is allowed to be


allocated for the socket buffer.


long sb_lowat low watermark for socket buffer. Writing is disallowed unless


there is more than the low watermark space in the socket and


conversely reading is disallowed, if there is less data than the


low watermark.


struct mbuf * sb_mb,


sb_mbtail,


sb_lastrecord


mbuf chains associated with the socket buffer


int sb_flags flags for the socket buffer, such as locking and async I/O


information


int sb_timeo time to wait for send space or receivable data.


u_long sb_overflowed statistics on times we had to drop data due to the socket


buffer being full.


Socket buffers are manipulated by the sb* family of functions. Examples include sbappend, which


appends data to the socket buffer (it assumes that relevant space checks have been made prior to calling


it) and sbdrop, which is used to remove packets from the front of a socket buffer queue. The latter is


used also by e.g. TCP for removing ACKed data from the send buffer (recall that "original" TCP requires


to ACK data in-order).


4.2.3 Socket Creation


A socket is created by making the system call socket, which is handled inside the kernel by


sys__socket30 in kern/uipc_syscalls.c (sys_socket is reserved for compat30 ABI). First, a


65







Chapter 4 Networking


file descriptor structure is allocated for the socket using fdalloc. Then, the socket structure itself is


created and initialized in socreate in kern/uipc_socket.c.


socreate reserves memory for the socket data structure from a pool and initializes the members that


were discussed in the section Socket Data Structure. It also calls the socket’s protocol’s pr_usrreq


method with the PRU_ATTACH argument. This allows to do protocol-specific initialization, such as


reserve memory for protocol control blocks.


4.2.4 Socket Operation


Sockets are handled through the so* family if functions. Some of them map directly to system calls, such


as sobind and soconnect, while others, such as sofree are meant for kernel internal consumption.


Socket control routines take data arguments in the form of the memory buffers (mbufs) used in the


networking stack. The callers of these functions must be prepared to handle mbufs, although usually this


can arranged for with a calls to sockargs. It should be noted, that the comment above the function takes


an attitude towards this behaviour:


/*


* XXX In a perfect world, we wouldn’t pass around socket control


* XXX arguments in mbufs, and this could go away.


*/


Note: In case a perfect world is some day being planned, the author should also be contacted, since he


can contribute a whole lot of ideas for that goal.


The critical socket routines are sosend and soreceive. These are used for transmitting and receiving


network data. They make sure that the socket is in the correct state for data transfer, handle buffering


issues and call the socket protocol methods for doing data access. They are, as mentioned above in the


socket member discussion, not called directly but rather through the so_send and so_receive


members.


4.2.5 Socket Destruction


Sockets are destroyed once they are no longer useful. This is done when their reference count in the file


descriptor table drops to zero. The socket is first disconnected, if it was connected at all. Then, if the


socket option SO_LINGER was set, the socket lingers around until either the timer expires or the


connection is closed. After this the socket is detached from its associated protocol and finally freed.


4.2.6 Protocol Support


Each protocol (e.g. TCP/IP or UDP/IP) has operations which depend on its functionality. These are


controlled through the so_proto member in struct socket. While the member provides many different


interfaces, the socket is interested in two: pr_ctloutput, which is used for control output and


pr_usrreq, which is used for user requests. Additionally, the socket code is interested in the flags set for


the protocol pointed to by so_proto. These flags are defined in sys/protosw.h, but examples include


PR_CONNREQUIRED and PR_LISTEN, both of which the TCP protocol sets but UDP sets neither.


66







Chapter 4 Networking


Control output is used to set or get parameters specific to the protocol. These are called from the kernel


implementations of setsockopt and getsockopt. If the level parameter for the calls is set


appropriately, the calls will trickle to the correct layer (e.g. TCP or IP) before taking action. For instance,


tcp_ctloutput checks if the request is for itself and proceeds to query the IP layer if it discovers that


the call should be passed down.


The user request method handles multiple types of different requests coming from the user. A complete


list is defined in sys/protosw.h, but examples include PRU_BIND for binding the protocol to an


address (e.g. making data received at an address:port UDP pair accepted), PRU_CONNECT for initiating


a protocol level connect (e.g. TCP handshake) and PRU_SEND for sending data.


4.3 mbufs


The data structure used to pass data around in the networking code is known as an mbuf. An mbuf is


described by struct mbuf, which is defined in sys/mbuf.h. However, it is not defined in the regular


fashion, but rather through the macro MBUF_DEFINE. To understand the need for this trickery, we need


to first look at the structure of an mbuf.


To accommodate for the needs of networking subsystem, an mbuf needs to provide cheap operations for


prepending headers and stripping them off. Therefore an mbuf is structured as a list of constant-size


struct mbufs, of which each consist of a structure header and optional secondary headers or data.


this is mostly TODO, still


4.4 IP layer


TODO


4.5 UDP


TODO


4.6 TCP


TODO


67







Chapter 5


Networking Services


Services built on top of the core networking functionality are described here. They include, for example,


the IEEE 802.11 subsystem and the IPsec subsystem. Additionally, networking pseudo devices and their


operation is described.


5.1 IEEE 802.11


The net80211 layer provides functionality required by wireless cards. It is located under


sys/net80211. The code is meant to be shared between FreeBSD and NetBSD and therefore


NetBSD-specific bits should be attempted to be kept in the source file ieee80211_netbsd.c (likewise,


there is ieee80211_freebsd.c in FreeBSD).


The ieee80211 interfaces are documented in Chapter 9 of the NetBSD manual pages. This document


does not attempt to duplicate information already available there.


The responsibilities of the net80211 layer are the following:


• MAC address based access control


• crypto


• input and output frame handling


• node management


• radiotap framework for bpf/tcpdump


• rate adaption


• supplementary routines such a kernel diagnostic output, conversion functions and resource


management


The ieee80211 layer positions itself logically between the device driver and the ethernet module,


although for transmission it is called indirectly by the device driver instead of control passing straight


through it. For input, the ieee80211 layer receives packets from the device driver, strips any information


useful only to wireless devices and in case of data payload proceeds to hand the Ethernet frame up to


ether_input.


5.1.1 Device Management


The way to describe an ieee80211 device to the ieee80211 layer is by using a struct ieee80211com,


declared in sys/net80211/ieee80211_var.h. It is used to register a device to the ieee80211 from


the device driver by calling ieee80211_ifattach. Fields to be filled out by the caller include the


68







Chapter 5 Networking Services


underlying struct ifnet pointer, function callbacks and device capability flags. If a device is detached, the


ieee80211 layer can be notified with the call ieee80211_ifdetach.


5.1.2 Nodes


A node represents another entity in the wireless network. It is usually a base station when operating in


BSS mode, but can also represent entities in an ad-hoc network. A node is described by struct


ieee80211_node, declared in sys/net80211/ieee80211_node.h. Examples of fields contained in the


structure include the node unicast encryption key, current transmit power, the negotiated rate set and


various statistics.


A list of all the nodes seen by a certain device is kept in the struct ieee80211com instance in the field


ic_sta and can be manipulated with the helper functions provided in


sys/net80211/ieee80211_node.c. The functions include, for example, methods to scan for nodes,


iterate through the nodelist and functionality for maintaining the network structure.


5.1.3 Crypto Support


Crypto support enables the encryption and decryption of the network frames. It provides a framework for


multiple encryption methods such as WEP and null crypto. Crypto keys are mostly managed through the


ioctl interface and inside the ieee80211 layer, and the only time drivers need to worry about them is in


the send routine when they must test for an encapsulation requirement and call


ieee80211_crypto_encap if necessary.


5.2 IPSec


IPSec is collection of security-related protocols: Authentication Header (AH) and Encapsulated Security


Payload (ESP). This section, however, is TODO.


5.3 Networking pseudo-devices


A networking pseudo-device does not have a physical hardware component backing the device. Pseudo


devices can be roughly divided into two different categories: pseudo-devices which behave like an


interface and devices which are controlled through a device node. An interface built on top of a


pseudo-device acts completely the same as an interface with hardware backing the interface.


Since there is no backing hardware involved, most of these interfaces can be generated and destroyed


dynamically at runtime. Interfaces that can dynamically de/allocate themselves known as cloning


interfaces. They are created and destroyed by the ifconfig tool by using ifconfig create and ifconfig


destroy, respectively. Additionally, the interface names available for cloning can be requested by


ifconfig -C.


The list of networking pseudo-devices with short descriptions is presented below.


Table 5-1. Available networking pseudo-devices


69







Chapter 5 Networking Services


name description


bpfilter Berkeley Packet filter, bpf(4). Can be used to


capture network traffic matching certain pattens.


loop The loopback network device, lo(4). All output is


directed as input for the loopback interface.


npf NetBSD Packet Filter, npf(7). Used to filter IP


traffic.


ppp Point-to-Point Protocol, ppp(4). This interface


allows to create point-to-point network links.


pppoe Point-to-Point Protocol Over Ethernet, pppoe(4).


Encapsulates PPP inside Ethernet frames.


sl Serial Line IP, sl(4). Used to transport IP over a


serial connection.


strip STarmode Radio IP, strip(4). Similar to SLIP,


except uses the STRIP protocol instead of SLIP.


tap A virtual ethernet device, tap(4). The tap[n]


interface is attached to /dev/tap[n]. I/O on the


device node maps to Ethernet traffic on the


interface and vice versa.


tun Tunneling network device, tun(4). Similar to tap,


except that the packets handled are network layer


packets instead of Ethernet frames.


gre Encapsulating network device, gre(4). The gre


device can encapsulate datagrams into IP packets


in multiple formats, e.g. IP protocols 47 and 55,


and tunnels the packets over an IP network.


gif the generic tunneling interface, gif(4). gif can


encapsulate and tunnel IPv{4,6} over IPv{4,6}.


faith IPv6-to-IPv4 TCP relay interface, faith(4). Can


use used, in conjunction with faithd, to relay


TCPv6 traffic to IPv4 addresses.


stf Six To Four tunneling interface, stf(4). Tunnels


IPv6 over IPv4, RFC3056.


vlan IEEE 802.1Q Virtual LAN, vlan(4). Supports


Virtual LAN interfaces which can be attached to


physical interfaces and then be used to send virtual


lan tagged traffic.


bridge Bridging device, bridge(4). The bridging device is


used to attach IEEE 802 networks together on the


link layer.


70







Chapter 5 Networking Services


5.3.1 Cloning devices


In the distant past, the number of pseudo-device instances for each device type was hardcoded into the


kernel configuration and fixed at compile-time. This, while the fastest method for implementation, was


wasteful because it allocated resources based on a compile-decision and limiting because it required


recompilation when wanting to use the n+1’th device. Cloning devices allow resource allocation and


resource release dynamically at runtime.


This discussion will concentrate on cloning interfaces, i.e. cloners which are created using ifconfig.


Most of the work behind in cloning in interface is handled in common code in net/if.c in the


if_clone family of functions. Cloning interfaces are registered and deregistered using


if_clone_attach and if_clone_detach, respectively. These calls are usually made in the


pseudo-device attach and detach routines. Both functions take as an argument a pointer to the if_clone


structure, which identifies the cloning interface.


struct if_clone is initialized by using the IF_CLONE_INITIALIZER macro:


struct if_clone cloner =


IF_CLONE_INITIALIZER("clonername", cloner_create, cloner_destroy);


The parameters cloner_create and cloner_destroy are pointers to functions to be called from the


common code. Create is responsible for allocating resources and attaching the interface to the rest of the


framework while destroy is responsible for the opposite. Of course, destroy must preserve normal system


semantics and not remove resources which are still in use. This is relevant with for example the tun


device, where users open the /dev/tun[n] when using tun interface n.


A create or destroy operation coming from userspace passes through sys_ioctl and soo_ioctl before


landing at ifioctl. The correct struct if_clone is found by searching the names of the attached cloners,


i.e. doing string comparison. After this the function pointers in the structure are used.


5.3.2 Pseudo Interface Operation


The operation and attachment to the rest of the operating system kernel for a pseudo device depend


greatly on the device’s functionality. The following are some examples:


• The vlan interface is always attached to a parent device when operational. It sends packets by vlan


encapsulating them and enqueueing them onto the parent device packet send queue. It receives packets


from ether_input, removes the vlan encapsulation and passes it back to the parent interface’s


if_input routine.


• The gif interface registers itself as an interface to the networking stack by using if_attach and


gif_output as the output routine. This output routine is then called from the network layer output


routine, ip_output and the output routine eventually calls ip_output again once the packet has


been encapsulated. Input is handled by in_gif_input, which is called via the struct protosw input


routine from the encapsulated packet input function.


• The tap interface registers itself as a network interface using if_attach. When a packet is sent


through it, it notifies the device node listener or, if corresponding device is not open, simply drops all


packets. When a packet is written to the device node, it gets injected into the networking stack through


the if_input routine in the associated struct ifnet.


71







Chapter 5 Networking Services


5.4 Packet Filters


In principle there are two pseudo devices involved with packet filtering: npf is involved in filtering


network traffic, and bpf is an interface to capture and access raw network traffic. All will be discussed


briefly from the point of view of their attachment to rest of the kernel; the packet inspection and


modification engines they implement are beyond the scope of this document.


npf is implemented using pfil hooks, while bpf is implemented as a tap in all the network drivers.


5.4.1 Packet Filter Interface


pfil is a purely in-kernel interface to support packet filtering hooks. Packet filters can register hooks


which should be called when packet processing taken place; in its essence pfil is a list of callbacks for


certain events. In addition to being able to register a filter for incoming and outgoing packets, pfil


provides support for interface attach/detach and address change notifications. pfil is described on the


pfil(9) manual page and is used by NPF to hook to the packet stream for implementing firewalls and NAT.


5.4.2 NPF


NPF, found in sys/net/npf, is a multiplatform packet filtering device useful for creating a firewall and


Network Address Translation (NAT). Operation is controlled through device nodes with userland tools.


NPF is documented on multiple different manual pages: npf(7), npf.conf(5) and npfctl(8) are good


starting points.


5.4.3 Berkeley Packet Filter


The Berkeley Packet Filter (bpf) (sys/net/bpf.c) provides link layer access to data available on the


network through interfaces attached to the system. bpf is used by opening a device node, /dev/bpf and


issuing ioctl’s to control the operation of the device. A popular example of a tool using bpf is


tcpdump.


The device /dev/bpf is a cloning device, meaning it can be opened multiple times. It is in principle


similar to a cloning interface, except bpf provides no network interface, only a method to open the same


device multiple times.


To capture network traffic, a bpf device must be attached to an interface. The traffic on this interface is


then passed to bpf to evaluation. For attaching an interface to an open bpf device, the ioctl BIOCSETIF is


used. The interface is identified by passing a struct ifreq, which contains the interface name in ASCII


encoding. This is used to find the interface from the kernel tables. bpf registers itself to the interfaces


struct ifnet field if_bpf to inform the system that it is interested about traffic on this particular interface.


The listener can also pass a set of filtering rules to capture only certain packets, for example ones


matching a given host and port combination.


72







Chapter 5 Networking Services


bpf captures packets by supplying a tapping interface, bpf_tap-functions, to link layer drivers and


relying on the drivers to always pass packets to it. Drivers honor this request and commonly have code


which, along both the input and output paths, does:


#if NBPFILTER > 0


if (ifp->if_bpf)


bpf_mtap(ifp->if_bpf, m0);


#endif


This passes the mbuf to the bpf for inspection. bpf inspects the data and decides is anyone listening to


this particular interface is interested in it. The filter inspecting the data is highly optimized to minimize


time spent inspecting each packet. If the filter matches, the packet is copied to await being read from the


device.


The bpf tapping feature looks very much like the interfaces provided by pfil, so a valid is question is


debating the necessity of both. Even though they provide similar services, their functionality is disjoint.


The bpf mtap wants to access packets right off the wire without any alteration and possibly copy it for


further use. Callers linking into pfil want to modify and possibly drop packets.


73







Appendix A.


Acknowledgments


A.1 Authors


• Julio Merino wrote most of Chapter 2 and small bits of Chapter 1. These chapters were the foundation


of this book.


The initial versions of these chapters were written as part of tmpfs’ development, which was possible


thanks to Google (http://www.google.com/)’s Summer of Code


(http://code.google.com/summerofcode.html) 2005 program.


Thanks also go to William Studenmund for reviewing Chapter 2 and providing multiple valuable


suggestions.


• Emmanuel Dreyfus wrote half of Chapter 3. Daniel Sieger wrote Section 3.6.


• Antti Kantee wrote Chapter 4 and Chapter 5, but was kind enough to leave room for future


contributions on the subject.


A.2 License


Copyright (c) 2005, 2006 The NetBSD Foundation, Inc. All rights reserved.


Redistribution and use in source and binary forms, with or without modification, are permitted provided


that the following conditions are met:


• Redistributions of source code must retain the above copyright notice, this list of conditions and the


following disclaimer.


• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and


the following disclaimer in the documentation and/or other materials provided with the distribution.


• All advertising materials mentioning features or use of this software must display the following


acknowledgement:


This product includes software developed by the NetBSD Foundation, Inc. and its contributors.


• Neither the name of The NetBSD Foundation nor the names of its contributors may be used to endorse


or promote products derived from this software without specific prior written permission.


THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS


"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED


TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A


PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR


CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,


74







Appendix A. Acknowledgments


EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,


PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;


OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,


WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR


OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF


ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


75







Appendix B.


Bibliography


Bibliography


[McKusick] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, John S. Quarterman, 1996,


0201549794, Addison-Wesley Professional, The Design and Implementation of the 4.4 BSD


Operating System.


[Goodheart] Berny Goodheart, James Cox, Michael J. Karels, 1994, Prentice Hall, The Magic Garden


Explained: The Internals of UNIX System V Release 4.


76





		NetBSD Internals

		Table of Contents

		List of Tables

		

		Purpose of this book

		Chapter 1 

		Memory management

		1.1 The UVM virtual memory manager

		1.1.1 UVM objects

		1.2 Managing wired memory

		1.2.1 Malloc types







		Chapter 2 

		File system internals

		2.1 Structural overview

		2.2 vnode interface overview

		2.2.1 The vnode data field

		2.2.2 vnode operations

		2.2.3 The vnode operations vector

		2.2.4 Executing vnode operations



		2.3 VFS interface overview

		2.3.1 The mount structure

		2.3.2 VFS operations

		2.3.3 The VFS operations structure



		2.4 File systems overview

		2.4.1 Ondisk file systems

		2.4.2 Network file systems

		2.4.3 Synthetic file systems

		2.4.4 Layered file systems

		2.4.5 Helper file systems



		2.5 Initialization and cleanup

		2.6 Mounting and unmounting

		2.6.1 Mount call arguments

		2.6.2 The mount utility

		2.6.3 The fsmount operation

		2.6.3.1 Retrieving mount parameters

		2.6.3.2 Getting the arguments structure

		2.6.3.3 Updating mount parameters

		2.6.3.4 Setting up a new mount point



		2.6.4 The vfsunmount function



		2.7 File system statistics

		2.8 vnode management

		2.8.1 vnode's life cycle

		2.8.2 vnode tags

		2.8.3 Allocation of a vnode

		2.8.4 Deallocation of a vnode

		2.8.5 vnode's locking protocol



		2.9 The root vnode

		2.10 Path name resolution procedure

		2.10.1 Path name components

		2.10.2 The lookup algorithm

		2.10.3 Lookup hints



		2.11 File management

		2.11.1 Creation of regular files

		2.11.2 Creation of hard links

		2.11.3 Removal of a file

		2.11.4 Rename of a file

		2.11.5 Reading and writing

		2.11.5.1 uio objects

		2.11.5.2 Getting and putting pages

		2.11.5.3 Memorymapping a file

		2.11.5.4 The read and write operations

		2.11.5.5 Reading and writing pages



		2.11.6 Attributes management

		2.11.6.1 Getting file attributes

		2.11.6.2 Setting file attributes



		2.11.7 Time management

		2.11.8 Access control



		2.12 Symbolic link management

		2.12.1 Creation of symbolic links

		2.12.2 Read of symbolic link's contents



		2.13 Directory management

		2.13.1 Creation of directories

		2.13.2 Removal of directories

		2.13.3 Reading directories



		2.14 Special nodes

		2.15 NFS support

		2.16 Step by step file system writing





		Chapter 3 

		Processes and threads

		3.1 Process startup

		3.1.1 execve usage

		3.1.2 Overview of inkernel execve code path

		3.1.3 Multiple executable format support with the exec switch

		3.1.3.1 Executable format probe

		3.1.3.2 Virtual memory space setup commands (vmcmds)

		3.1.3.3 Stack virtual memory space setup

		3.1.3.4 Initial register setup

		3.1.3.5 Return to userland





		3.2 Traps and system calls

		3.2.1 Traps

		3.2.2 Multiple kernel ABI support with the emul switch

		3.2.3 The syscalls.master table

		3.2.4 System call implementation in libc

		3.2.5 How to add a new system call

		3.2.6 Versioning a system call

		3.2.7 Committing changes to syscall tables

		3.2.8 Managing 32 bit system calls on 64 bit systems



		3.3 Processes and threads creation

		3.3.1 fork, clone, and pthreadcreate usage

		3.3.2 Overview of fork code path

		3.3.3 Overview of pthreadcreate code path



		3.4 Processes and threads termination

		3.4.1 exit, and pthreadexit usage

		3.4.2 Overview of exit code path

		3.4.3 Overview of pthreadexit code path



		3.5 Signal delivery

		3.5.1 Deciding what to do with a signal

		3.5.2 The sendsig function

		3.5.3 Cleaning up state after signal handler execution



		3.6 Thread scheduling

		3.6.1 Overview

		3.6.1.1 The 4.4BSD Scheduler

		3.6.1.2 The M2 scheduler



		3.6.2 References







		Chapter 4 

		Networking

		4.1 Routing

		4.1.1 Network Routing DB Backend

		4.1.2 Routing Interface

		4.1.3 Routing Sockets



		4.2 Sockets

		4.2.1 Socket Data Structure

		4.2.2 Socket Buffers

		4.2.3 Socket Creation

		4.2.4 Socket Operation

		4.2.5 Socket Destruction

		4.2.6 Protocol Support



		4.3 mbufs

		4.4 IP layer

		4.5 UDP

		4.6 TCP





		Chapter 5 

		Networking Services

		5.1 IEEE 802.11

		5.1.1 Device Management

		5.1.2 Nodes

		5.1.3 Crypto Support



		5.2 IPSec

		5.3 Networking pseudodevices

		5.3.1 Cloning devices

		5.3.2 Pseudo Interface Operation



		5.4 Packet Filters

		5.4.1 Packet Filter Interface

		5.4.2 NPF

		5.4.3 Berkeley Packet Filter







		Appendix A. 

		Acknowledgments

		A.1 Authors

		A.2 License





		Appendix B. 

		Bibliography

		Bibliography






