
Implementation and Modification for CPE Routers:

Filter Rule Optimization, IPsec Interface and Ethernet Switch

Masanobu SAITOH(msaitoh@netbsd.org)∗ Hiroki SUENAGA(hsuenaga@iij.ad.jp)†

March 2014

Abstract

Internet Initiative Japan Inc. (IIJ) has developed
its own Customer Premises Equipment (CPE), called
SEIL , for 15 years. The firmware of SEIL is based
on NetBSD and IIJ has modified NetBSD to optimize
for the use as a CPE.

A CPE is one of special use cases, so we don’t say
all of our modifications is worth to merge. Never-
theless, we think some of them are worth to merge
and there are some considerable ideas. We mainly
describes about three things: filter rule optimization,
IPsec interface and Ethernet switch.

1 Implementation and modifi-
cation for CPE

IIJ has modified the some parts of NetBSD to im-
prove performance and functionalities of our CPE.

Several years ago, IIJ implemented own IP filter
and NAT/NAPT functions named iipf and iipfnat.
NetBSD had an IP filter implementation ipf , how-
ever it didn’t satisfy our requirements. pf and npf
wasn’t born yet. iipf had implemented some ideas
to improve throughput. It has a hash-based flow-
caching layer. Even if cache-miss occurs, iipf keeps
reasonable throughput thanks to flow rules that are
stored in an optimized tree.

Our IPsec stack also has a caching layer on Secu-
rity Policy Database (SPD) and Security Association
Database (SAD). Because NetBSD’s PF KEY API

∗The NetBSD Foundation
†Internet Initiative Japan Inc.

uses list structures for SPD and SAD, throughput
will drop if there are a number of SP or SA. A CPE
is often used to create VPNs, so the number of SP
and SA can be very large. IPsec tunneling is also
important for VPN; many customers prefer Route-
based VPN to Policy-based VPN. (This topic will be
described in another article.)

For small office, Ethernet switch is required. Eth-
ernet switch chip is not expensive and it’s easy to
integrate into CPE. Integrating Ethernet switch into
CPE is better than nothing because both router func-
tion and Ethernet switch function can be managed
comprehensively.

2 Filter Rule Scan Optimiza-
tion

In this section, we describe the new optimization of
our packet filer.

2.1 Filter rule, state and result cache

On the implementations of general packet filter and
old filter implementation on SEIL, the processing
speed is proportional to the number of filter rules.
If the number of the rules is 100, in the worst case,
all 100 rules are checked.

To avoid this problem, the state mechanism is
used. When a packet was passed, the interface,
source/destination address, source/destination port
and so on were saved into an entry of a hash table.
And then, a hash value is calculated in each packet
and the value is looked up. If the entry was found,

Figure 1: Filter Result Cache

the packet is passed. This mechanism is good be-
cause it doesn’t scan rules if it is in a hash table. If a
lot of data is processed with the same state, the hit
ratio is very high. But, if a hash miss occurred a rule
scan is done. It’s heavy task.

In iipf, it caches a packet’s information(interface,
source, dest, protocol), the hash value and the re-
sult(block or pass) independently of the result. When
rule is scanned, at first, a packet’s hash value is cal-
culated from the address, protocol and port number,
and the value is used to check the result cache. If
it exists, the result(block or pass) is returned imme-
diately. If it doesn’t exist, rule scan is done, and
the packet information, hash value and the result are
saved into the result cache for the next check (Fig-
ure 1). The entries are managed by LRU algorithm.

2.2 Optimizing rule scan itself

An fundamental way to speedup filtering is to im-
prove the performance of rule scanning which is done
when a cache miss happened.

Figure 2 is an example of iipf’s filter rules. The
top entry of the rules is evaluated first and the bot-
tom entry is evaluated at last. The third column is
an identifier string name to specify each rule. With
the old implementation, the rule is evaluated like Fig-

ure 3. So, the more number of rules increased, the
longer the processing speed becomes. One of opti-
mization way is to change such evaluations like Fig-
ure 4. New implementation does such optimization
when rules are set.

2.3 Implementation

One of the way to implement optimization described
above is to use compiler technique. Rules are decom-
posed into small statements and then those state-
ments are optimized with composer technique. It’s
possible but the implementation is not easy.

Our solution is splitting filter rule lists using with
special condition statements to reduce the number of
rules that are scanned. The merit of this way is that
it’s unnecessary to change the evaluation of each filter
rule.

1. Make a list of conditions which are used for split-
ting rules into two groups. Interface, address,
protocol an port are used for the conditions.

2. Select one of conditions.

3. Split filer rules into two groups by checking
whether a rule matches or not. If a rule can’t
be identified whether it matches or not. The
rule is put into both groups.

4. For each group, goto step 2 and retry.

5. Stop when the number of rules was decreased a
specified limit.

Try this algorithm to Figure 2’s rules. Figure 5 is
the first try. pppoe0 is selected. An rule that the
interface “any” matches both pppoe0 and others, so
the rule is put into both groups. Figure 6 is the
second try. The next condition is “protocol number
is less than 17”. The rule of “protocol any” belongs
to both groups. Figure 7 is the third try. The next
condition is “protocol number is less than 6”. The
rule of “protocol any” belongs to both groups. The
result means that three rules are checked on the worst
case. The number was decreased from 6 to 3.

filter add LAN interface lan0 direction in/out action pass
filter add PING_PASS interface pppoe0 direction in protocol icmp icmp-type 8 action pass
filter add ICMP_BLOCK interface pppoe0 direction in protocol icmp action block
filter add DNS_PASS interface pppoe0 direction in/out protocol udp dstport 53 action pass
filter add TCP_PASS interface pppoe0 direction in/out protocol tcp action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

Figure 2: iipf’s filter rules example 1

/* LAN */
if (pkt.interface == "lan0")

return PASS;

/* PING_PASS */
if ((pkt.interface == "pppoe0") &&

(pkt.direction == in) &&
(pkt.protocol == icmp) &&
(pkt.icmp.type == 8))

return PASS;

/* ICMP_BLOCK */
if ((pkt.interface == "pppoe0") &&

(pkt.direction == in) &&
(pkt.protocol == icmp))

return BLOCK;

/* DNS_PASS */
if ((pkt.interface == "pppoe0") &&

(pkt.protocol == udp) &&
(pkt.udp.dstport == 53))

return PASS;

/* TCP_PASS */
if ((pkt.interface == "pppoe0") &&

(pkt.protocol == tcp) &&
return PASS;

/* BLOCK_RULE */
return BLOCK;

Figure 3: Normal processing exam-
ple of Figure 2 rules

if (pkt.interface == "pppoe0") {
if (pkt.direction == in) {

if (pkt.protocol == icmp) {
if (pkt.icmp.type == 8) {

return PASS;
} else {

return BLOCK;
}

} else if (pkt.protocol == udp) {
if (pkt.udp.dstport == 53) {

return PASS;
}

} else if (pkt.protocol == tcp) {
return PASS;

} else {
return BLOCK;

}
} else {

if (pkt.protocol == udp) {
if (pkt.udp.dstport == 53) {

return PASS;
}

} else if (pkt.protocol == tcp) {
return PASS;

} else {
return BLOCK;

}
}

} else {
if (pkt.interface == "lan0") {

return PASS;
}
return BLOCK;

}

Figure 4: Optimized processing ex-
ample of Figure 2 rules

COND_INTERFACE("pppoe0")
filter add PING_PASS interface pppoe0 direction in protocol icmp icmp-type 8 action pass
filter add ICMP_BLOCK interface pppoe0 direction in protocol icmp action block
filter add DNS_PASS interface pppoe0 direction in/out protocol udp dstport 53 action pass
filter add TCP_PASS interface pppoe0 direction in/out protocol tcp action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

!COND_INTERFACE("pppoe0")
filter add LAN interface lan0 direction in/out action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

Figure 5: Try 1. Split with pppoe0.

COND_INTERFACE("pppoe0")
COND_PROTOCOL(<17)

filter add PING_PASS interface pppoe0 direction in protocol icmp icmp-type 8 action pass
filter add ICMP_BLOCK interface pppoe0 direction in protocol icmp action block
filter add TCP_PASS interface pppoe0 direction in/out protocol tcp action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

!COND_PROTOCOL(<17)
filter add DNS_PASS interface pppoe0 direction in/out protocol udp dstport 53 action pass
filter add BLOCK interface any direction in/out protocol any action block

!COND_INTERFACE("pppoe0")
filter add LAN interface lan0 direction in/out action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

Figure 6: Try 2. Split with protocol number is less than 17.

COND_INTERFACE(‘‘pppoe0’’)
COND_PROTOCOL(<17)

COND_PROTOCOL(<6)
filter add PING_PASS interface pppoe0 direction in protocol icmp icmp-type 8 action pass
filter add ICMP_BLOCK interface pppoe0 direction in protocol icmp action block
filter add BLOCK interface any direction in/out protocol any action block

!COND_PROTOCOL(<6)
filter add TCP_PASS interface pppoe0 direction in/out protocol tcp action pass
filter add BLOCK interface any direction in/out protocol any action block

!COND_PROTOCOL(<17)
filter add DNS_PASS interface pppoe0 direction in/out protocol udp dstport 53 action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

!COND_INTERFACE(‘‘pppoe0’’)
filter add LAN interface lan0 direction in/out action pass
filter add BLOCK_RULE interface any direction in/out protocol any action block

Figure 7: Try 3. Split with protocol number is less than 6.

2.4 Selection of condition value

In above example, condition values were selected a
little intentionally. In real program, all values which
appeared in the rules are tried and the best balanced
condition is used.

Next filter rule example is Figure 8. At first step,
make a list of conditions which are used for splitting
rules into two groups. The list is as follows:

INTERFACE = "pppoe0"
SRC < 10.0.0.0
SRC < 11.0.0.0
SRC < 172.16.0.0
SRC < 172.32.0.0
SRC < 192.168.0.0
SRC < 192.169.0.0
PROTOCOL < TCP
DSTPORT < 22
DSTPORT < 24
DSTPORT < 80
DSTPORT < 443
DSTPORT < 512
DSTPORT < 514

And then, split rules using with the all conditions.
The result is Table 1. The best balanced condition is
COND DSTPORT(<24), so the condition is selected.
Then, apply the algorithm with top half of Figure 9.
The next candidates are:

INTERFACE = pppoe0
SRC < 10.0.0.0
SRC < 11.0.0.0
SRC < 172.16.0.0
SRC < 172.32.0.0
SRC < 192.168.0.0
SRC < 192.169.0.0
PROTOCOL < TCP
DSTPORT < 22
DSTPORT < 24

And, the next split candidates and the results
are in Figure 2 The best balanced condition is
COND SRC(<11.0.0.0), so the condition is selected.
By repeating this, the final result is in Figure 10.
This rules can’t be split anymore. The result means
that three rules are checked on the worst case. The
number was decreased from 7 to 2.

2.5 Performance result

The performance result is shown in Figure 11. Test
environment is:

• SEIL/B1 (Intel IXP432 400MHz, RAM 128MB)

Figure 11: Performance comparison of filter rule op-
timization

• Packet length 512bytes

• One direction.

• Incrementing source address in the range of
10.0.0.0/8.

The result showed that the new algorithm works fine
and the effect of the number of filter rule is very small.

3 Route packets to IPsec tun-
nel using routing table

IPsec based VPN is one of important functionalites
of IIJ’s CPE. Many corporations use IPsec VPN for
internal communications. Some corporations have a
large number of satellite offices, and redundant data
center networks. Each of satellite office has redun-
dant VPN connections to each data center network.
So the CPE on a satellite network needs to select one
from the redundant connections somehow.

A typical IPsec implementation uses ’Security As-
sociation Database(SAD)’ to create VPN connec-
tions, and uses ’Security Policy Database(SPD)’ to
select one from the VPN connections. On NetBSD,
the SPD is implemented as strictly ordered lists like

filter add RULE1 interface pppoe0 src 10.0.0.0/24 protocol any action pass
filter add RULE2 interface pppoe0 src 172.16.0.0/12 protocol any action pass
filter add RULE3 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 22-23 action pass
filter add RULE4 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 80 action pass
filter add RULE5 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 443 action pass
filter add RULE6 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 512-513 action pass
filter add RULEB interface any protocol any action block

Figure 8: iipf’s filter rules example 2

condition hogehoge rules
COND INTERFACE(”pppoe0”) RULE1,RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
!COND INTERFACE(”pppoe0”) RULEB

COND SRC(<10.0.0.0) RULEB
!COND SRC(<10.0.0.0) RULE1,RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
COND SRC(<11.0.0.0) RULE1,RULEB

!COND SRC(<11.0.0.0) RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
COND SRC(<172.16.0.0) RULE1,RULEB

!COND SRC(<172.16.0.0) RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
COND SRC(<172.32.0.0) RULE1,RULE2,RULEB

!COND SRC(<172.32.0.0) RULE3,RULE4,RULE5,RULE6,RULEB
COND SRC(<192.168.0.0) RULE1,RULE2,RULEB
!COND SRC(<192.168.0.0) RULE3,RULE4,RULE5,RULE6,RULEB
COND SRC(<192.169.0.0) RULE1,RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
!COND SRC(<192.169.0.0) RULEB
COND PROTOCOL(<tcp) RULE1,RULE2,RULEB

!COND PROTOCOL(<tcp) RULE3,RULE4,RULE5,RULE6,RULEB
COND DSTPORT(<22) RULE1,RULE2,RULEB

!COND DSTPORT(<22) RULE3,RULE4,RULE5,RULE6,RULEB
COND DSTPORT(<24) RULE1,RULE2,RULE3,RULEB

!COND DSTPORT(<24) RULE4,RULE5,RULE6,RULEB
COND DSTPORT(<80) RULE1,RULE2,RULE3,RULEB

!COND DSTPORT(<80) RULE4,RULE5,RULE6,RULEB
COND DSTPORT(<443) RULE1,RULE2,RULE3,RULE4,RULEB
!COND DSTPORT(<443) RULE5,RULE6,RULEB
COND DSTPORT(<512) RULE1,RULE2,RULE3,RULE4,RULE5,RULEB
!COND DSTPORT(<512) RULE6,RULEB
COND DSTPORT(<514) RULE1,RULE2,RULE3,RULE4,RULE5,RULE6,RULEB
!COND DSTPORT(<514) RULEB

Table 1: First Split candidates and the results

COND_PROTOCOL(<24)
filter add RULE1 interface pppoe0 src 10.0.0.0/24 protocol any action pass
filter add RULE2 interface pppoe0 src 172.16.0.0/12 protocol any action pass
filter add RULE3 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 22-23 action pass
filter add BLOCK interface any protocol any action block

!COND_PROTOCOL(<24)
filter add RULE4 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 80 action pass
filter add RULE5 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 443 action pass
filter add RULE6 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 512-513 action pass
filter add RULEB interface any protocol any action block

Figure 9: 1st split result

condition rules
COND INTERFACE(“pppoe0”) RULE1,RULE2,RULE3,RULEB

!COND INTERFACE(“pppoe0”) RULEB
COND SRC(<10.0.0.0) RULEB
!COND SRC(<10.0.0.0) RULE1,RULE2,RULE3,RULEB
COND SRC(<11.0.0.0) RULE1,RULEB
!COND SRC(<11.0.0.0) RULE2,RULE3,RULEB

COND SRC(<172.16.0.0) RULE1,RULEB
!COND SRC(<172.16.0.0) RULE2,RULE3,RULEB
COND SRC(<172.32.0.0) RULE1,RULE2,RULEB
!COND SRC(<172.32.0.0) RULE3,RULEB
COND SRC(<192.168.0.0) RULE1,RULE2,RULEB
!COND SRC(<192.168.0.0) RULE3,RULEB
COND SRC(<192.169.0.0) RULE1,RULE2,RULE3,RULEB
!COND SRC(<192.169.0.0) RULEB
COND PROTOCOL(<tcp) RULE1,RULE2,RULEB

!COND PROTOCOL(<tcp) RULE3,RULEB
COND DSTPORT(<22) RULE1,RULE2,RULEB
!COND DSTPORT(<22) RULE3,RULEB
COND DSTPORT(<24) RULE1,RULE2,RULE3,RULEB
!COND DSTPORT(<24) RULEB

Table 2: Second Split candidates and the results

COND_PROTOCOL(<24)
COND_SRC(<11.0.0.0)

filter add RULE1 interface pppoe0 src 10.0.0.0/24 protocol any action pass
filter add BLOCK interface any protocol any action block

!COND_SRC(<11.0.0.0)
COND_SRC(<172.32.0.0)

filter add RULE2 interface pppoe0 src 172.16.0.0/12 protocol any action pass
filter add BLOCK interface any protocol any action block

!COND_SRC(<172.32.0.0)
filter add RULE3 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 22-23 action pass
filter add BLOCK interface any protocol any action block

!COND_PROTOCOL(<24)
COND_DSTPORT(<512)

COND_DSTPORT(<443)
filter add RULE4 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 80 action pass
filter add BLOCK interface any protocol any action block

!COND_DSTPORT(<443)
filter add RULE5 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 443 action pass
filter add BLOCK interface any protocol any action block

!COND_ DSTPORT(<512)
filter add RULE6 interface pppoe0 src 192.168.0.0/16 protocol tcp dstport 512-513 action pass
filter add BLOCK interface any protocol any action block

Figure 10: final split

filter rules. Each entry of SPD describes a packet to
be secured.

IIJ added some modifications to the NetBSD’s im-
plementation. We discuss about the modifications in
this section. Figure 12 shows the outline of IIJ’s mod-
ifications. Gray colored components in the figure are
extended by IIJ.

3.1 Problem of typical IPsec imple-
mentation

We have 2 problem to use NetBSD as a CPE.
One problem is performance. The implementa-

tion of SPD is simple and secure, but we must exe-
cute LISTFOREACH() to each packet. Encryption
throughput of our CPE is about 100 - 200 Mbps. If
average packet length is 1000 bytes, the packet ar-
riving rate is about 12 kpps to 25 kpps. This means
LIST FOREACH() will be executed 25,000 times a
seconds. And if the SPD has 100 entries, memcmp()
will be executed 2,500,000 times a seconds(2.5 MHz!).
Of course, the SPD is much smaller on many work-
stations, but the SPD of VPN devices often have hun-
dreds of entries. SPD grows lager due to number of
offices and data centers, and due to number of net-

NetBSD IPsec SAD/SPD lookup

IPsec SAD/SPD Caching Layer

SAD SPD IPsec I/F
SPD

key_allocsp() IPsec Interface
network pesudo device

ip_input()

key_allocsa()

Packet
Input

policy based processing routing based processing

add/del

setkey
command

ifconfig
command

tunnel
deletetunnel

add/del/read

read

Figure 12: IPsec modifications

work segments in each of networks. It is very easy to
grow the SPD.

The other problem is redundancy. SPD is a strictly
ordered list, and there is no same order(priority).
Each of entry just has a single actions, and there is no
way to select multiple connection. It is hard to have a
benefit of redundant connections. Some VPN devices
can use a routing table instead of SPD. Because there
are many existing redundant routing techniques, it
easy to have a benefit of the redundant VPN connec-
tions. IIJ’s CPE supports such routing based IPsec
VPN. Here is a example loop in netipsec/key.c.

647 struct secpolicy *
648 key_allocsp(const struct secpolicyindex *spidx,

u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
...
672 LIST_FOREACH(sp, &sptree[dir], chain) {
...
677 if (sp->state == IPSEC_SPSTATE_DEAD)
678 continue;
679 if (key_cmpspidx_withmask(&sp->spidx,

spidx))
680 goto found;
681 }
...

3.2 Improve SAD/SPD lookup per-
formance

IIJ implements software based caching layer to SPD
and SAD. The caching code takes a packet header,
hash it, then lookup the cache table. The table has
a pointer to a SAD/SPD entry. If there is no entry
for the packet, scan the SAD/SPD and write it to
cache table. This strategy works fine for the CPE.
Because the number of node in the corporation’s net-
work is much smaller than the real Internet, the flow
table doesn’t become so large. Our implementation
uses 2048 entries for the cache table and it works
fine to connect to 100 - 200 satellite networks. Of
course, there are some exceptions. For example, ran-
dom traffics generated by malwares are pollutes the
cache table.

There are 13 API functions for SPD/SAD caching
layer management, 1 initialization, 4 lookups for each
of structure, and 8 invalidates.

void key_cache_init();

struct secpolicy *sp_cache_lookup();
struct secashead *sah_cache_lookup();
struct secasvar *sav_cache_lookup();
struct secacq *acq_cache_lookup();

void sp_cache_inval(void);
void sp_cache_inval1(struct secpolicy *);
void sah_cache_inval(void);
void sah_cache_inval1(struct secashead *)
void sav_cache_inval(void);
void sav_cache_inval1(struct secasvar *);
void acq_cache_inval(void);
void acq_cache_inval1(struct secacq *);

Cache lookup code is simply inserted before the
LIST FOREACH().

647 struct secpolicy *
648 key_allocsp(const struct secpolicyindex *spidx,

u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
...
666 if (key_cache_enable > 0) {
667 /* IIJ Extension: lookup cache */
668 sp = sp_cache_lookup(spidx, dir);
669 goto skip;
670 }
671
672 LIST_FOREACH(sp, &sptree[dir], chain) {

The hashing algorithm is very important compo-
nent. The algorithm must be fast enough and must
have enough distribution. Unfortunately, there is no
specialist of mathematics in IIJ’s CPE team, the al-
gorithm should not be a best. Here is our hashing
code for your interest.

if (src->ss_family == AF_INET) {
u_int32_t *saddr, *daddr;
u_int32_t sport, dport;

saddr = (u_int32_t *)&satosin(src)->sin_addr;
daddr = (u_int32_t *)&satosin(dst)->sin_addr;
sport = (u_int32_t)satosin(src)->sin_port;
dport = (u_int32_t)satosin(dst)->sin_port;

hash = *saddr ^ bswap32(*daddr) ^
(sport << 16) ^ dport;

hash = (hash >> 16) ^ hash;
hash = (hash >> 4) ^ hash;

}
else if (src->ss_family == AF_INET6) {

struct in6_addr *saddr, *daddr;
u_int32_t sport, dport;
u_int32_t hash128[4];

saddr = &satosin6(src)->sin6_addr;
daddr = &satosin6(dst)->sin6_addr;
sport = (u_int32_t)satosin6(src)->sin6_port;
dport = (u_int32_t)satosin6(dst)->sin6_port;

/* stage 1 */
hash128[0] =

saddr->s6_addr32[0] ^ daddr->s6_addr32[3];
hash128[1] =

saddr->s6_addr32[1] ^ daddr->s6_addr32[2];
hash128[2] =

saddr->s6_addr32[2] ^ daddr->s6_addr32[1];
hash128[3] =

saddr->s6_addr32[3] ^ daddr->s6_addr32[0];

/* stage 2 */
hash128[0] = hash128[0] ^ hash128[3];
hash128[1] = hash128[1] ^ hash128[2];

/* stage 3 */
hash = hash128[0] ^ hash128[1] ^

(sport << 16) ^ dport;
}

3.3 VPN tunnel network device

IIJ implements a VPN tunnel network device named
IPsec Interface. The device has BSD name ipsec0,
ipsec1, ..., ipsecN . It is a kind of pseudo network
device like a IP-IP tunneling device like gif, gre. If a
packet is routed into the IPsec interface, the kernel
apply IPsec tunnel encryption. There is no need to
write a SPD.

The device is controlled by ifconfig command as
same as gif device. When tunnel address is config-
ured, the device create Security Policies automati-
cally. The Security Policies are registered to a SPD
other than NetBSD’s genuine SPD. i.e. IIJ’s kernel
has 2 separated SPDs. SP lookup code always looks
for genuine SPD 1st, then the IPsec Interface’s SPD
2nd. The generated entry is fully compatible with

Security Policies of transport mode IPsec to secure
tunnel end-point address. Thus, there is no modifica-
tion for crypto subsystem. And IPsec Interfaces can
share the NetBSD’s genuine SAD. The code snippet
is here. A LIST FOREACH is just added.

647 struct secpolicy *
648 key_allocsp(const struct secpolicyindex *spidx,

u_int dir, const char* where, int tag)
649 {
650 struct secpolicy *sp;
651 int s;
...
672 LIST_FOREACH(sp, &sptree[dir], chain) {
...
681 }
682 #if NIPSECIF > 0
683 LIST_FOREACH(sp, &ipsecif_sptree[dir], chain) {
...
692 }
693 #endif

setkey command can add or delete entries in gen-
uine SPD but it cannot add or delete entries in IPsec
Interface’s SPD. But the setkey command can read
the entries in IPsec Interface’s SPD. An IKE server
can also read the entries in IPsec Interface’s SPD,
and create a SA for a entry in IPsec Interface’s SPD.
We don’t need to modify IKE server and most of
management services. In kernel IPsec stack also read
a entry in IPsec Interface’s SPD via APIs in key.c,
so we don’t need to modify existing IPsec stack. We
just modified DB lookup code in key.c. Here is simple
example of SPD behavior.

Example 1, configure the interface. IPv6 traffic is
dropped by default. Lack of awareness of IPv6 is
security risk.

setkey -DP
No SPD entries.
ifconfig ipsec0
ipsec0: flags=8010<POINTOPOINT,MULTICAST>

inet6 fe80::2e0:4dff:fe30:28%ipsec0
-> prefixlen 64 scopeid 0xf

ifconfig ipsec0 tunnel 203.0.113.1 203.0.113.2
ifconfig ipsec0 inet 192.0.2.1
ifconfig ipsec0
ipsec0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST>

tunnel inet 203.0.113.1 --> 203.0.113.2
inet 192.0.2.1 -> netmask 0xffffff00
inet6 fe80::2e0:4dff:fe30:28%ipsec0

-> prefixlen 64 scopeid 0xf
setkey -DP
203.0.113.2[any] 203.0.113.1[any] 41(ipv6)

in discard
spid=36 seq=3 pid=1807
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 4(ipv4)
in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16402
spid=34 seq=2 pid=1807
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 41(ipv6)
out discard
spid=35 seq=1 pid=1807
refcnt=1

203.0.113.1[any] 203.0.113.2[any] 4(ipv4)
out ipsec
esp/transport/203.0.113.1-203.0.113.2/unique#16401
spid=33 seq=0 pid=1807
refcnt=1

#

Example 2, setkey cannot delete SP entries for
IPsec Interfaces.

setkey -FP
setkey -DP
203.0.113.2[any] 203.0.113.1[any] 41(ipv6)

in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16410
spid=44 seq=3 pid=2229
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 4(ipv4)
in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16408
spid=42 seq=2 pid=2229
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 41(ipv6)
out ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16409
spid=43 seq=1 pid=2229
refcnt=1

203.0.113.1[any] 203.0.113.2[any] 4(ipv4)
out ipsec
esp/transport/203.0.113.1-203.0.113.2/unique#16407
spid=41 seq=0 pid=2229
refcnt=1

Example 3, accept IPv6 traffic. It is controlled by
link2 option.

ifconfig ipsec0 link2
setkey -DP
203.0.113.2[any] 203.0.113.1[any] 41(ipv6)

in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16406
spid=40 seq=3 pid=13654
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 4(ipv4)
in ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16404
spid=38 seq=2 pid=13654
refcnt=1

203.0.113.2[any] 203.0.113.1[any] 41(ipv6)
out ipsec
esp/transport/203.0.113.2-203.0.113.1/unique#16405
spid=39 seq=1 pid=13654
refcnt=1

203.0.113.1[any] 203.0.113.2[any] 4(ipv4)
out ipsec
esp/transport/203.0.113.1-203.0.113.2/unique#16403
spid=37 seq=0 pid=13654
refcnt=1

#

Example 4, unconfigure tunnel.

ifconfig ipsec0 deletetunnel
setkey -DP
No SPD entries.
#

Once IPsec Interface is configured, and IKE server
creates SAs for it, we can use the interface as common
P2P network interface like gif, ppp, pppoe, and so on.
We can manage VPN traffic by RIP, OSPF, float-
ing stack routes, other common routing techniques.
We can also use IP Filter on the IPsec Interface. It
very easy to have a benefit of redundant VPN con-
nections.

4 Ethernet Switch Framework

One of previous product named SEIL/X2 has an Eth-
ernet switch. The function is almost the same as SA-
W1’s Ethernet switch chip, but the old code had not
enough functions and it’s difficult to reuse. At that
time, FreeBSD has Ethernet switch function but it’s
little hardware dependent, so we designed new Eth-
ernet switch framework from scratch.

4.1 Design

The main concept on design is separating code into
Ethernet switch common function part and hardware

Figure 13: block diagram of SA-W1

specific part. For example, Ethernet function is sep-
arated into if ethersubr.c and if xxx.c (e.g. if bge.c).
Like that, Ethernet Switch framework is separated
into Ethernet switch common part and hardware spe-
cific part. Former is if etherswsubr.c and latter is
mvls.c for SA-W1.

To control Ethernet switch function, we made new
command swconfig(8). The main purpose of this
command was to hide hardware dependent part. The
current function of swconfig is similar to brconfig(4).
We think swconfig(8) and brconfig(8) can be inte-
grated into one command.

The driver is separated into two parts. One is
driver for controlling switch function(mvls(4)) and
another is driver for each port (mvlsp(4)). The ifnet
structure is used for those drivers. To control each
PHY with mii(4) layer, mvlsply(4) was made and is
attached from mvlsp(4) via mii attach(). Figure 13 is
the block diagram of SA-W1’s Ethernet switch part.

With this design, ifconfig, netstat, snmp can be
used without any modification. the media status and
each port’s counter can be checked with those pro-
grams.

See Figure 14 for the detail of the function of
swconfig(4). swconfig(4) calls MI ioctls to control
switch functions.

Figure 14: swconfig(4)

4.2 Current problem

Currently we have some problem. First, though this
is not specific to Ethernet switch, there is no best way
to know what mechanism is used between Ethernet
MAC and switch (or MII PHY), e.g. GMII, RGMII,
I2C or something else. So we sometimes have to write
it by hard-coding.

Another problem is the relation between the frame-
work and vlan(4). It’s little difficult to cooperate
with each other.

4.3 Future work

We implemented this framework only for Marvell
88E6171R. We are planning to port this framework
to other chips to check whether our design is appro-
priate or not.

5 Conclusion

Some of implementation can be merged to NetBSD
and other *BSD’s. For filter rule optimization, the
idea can be useful for some other filter implementa-
tions.

