Maintain the NetBSD Base System Using pkg_*
Tools

Yuuki Enomoto*

Ken’ichi Fukamachif

Abstract

This paper describes the script ”basepkg.sh” for base system packaging
to make NetBSD base system more granular.

Today, fine granular systems are expected to provide more rapid secu-
rity update and more flexible customization in creating a very small base

system for sensor network.

In "NetBSD”, base system packaging mechanism called ”syspkg” has

been developed, but now, its development is stagnant. In addition, it is
troubled to deal with ”syspkg” consisting of a lot of Makefiles and shell
scripts.

Thus we developed a shell script simpler than ”syspkg” framework.
This script uses src/distrib/sets/lists files and pkg-create command to
generate a fine granular base package. We verified our system can provide
minimum functionality that our package can replace a part of NetBSD
base system. It provides the first step for more granular NetBSD base

system.

1 Introduction

”Unix” such as Linux distribution and
*BSD is used mainly as servers. It is
very important to keep operating sys-
tems up to date for security. If a soft-
ware is found to be vulnerable, server
administrators must update the soft-
ware as soon as possible.

This updating process should be
rapid. So, it must be useful to replace a
vulnerable software with the latest bi-
nary by using some rapid mechanism
e.g. package managers.

Many Unix systems have its own
package manager(s) to manage soft-
ware. The scope managed by the
package manager depends the system.
Some developers consider that the
whole system consists of packages, an-
other consider that the operating sys-
tem consists of the base and optional
packages.

For example, Debian Linux pack-
ages the whole system to update
and upgrade it easily. FreeBSD
11.0 introduced a framework called
PkgBase[FreeBSD 2017]. to divide the

*Chitose Institute of Science and Technology, 758-90, Bibi, Chitose, Hokkaido, 066-8655,
mailto: m2160020@photon.chitose.ac.jp https://e-yuuki.org/

TChitose Institute of Science and Technology, 758-90, Bibi, Chitose, Hokkaido, 066-8655,
mailto:k-fukama@photon.chitose.ac.jp http://www.nsrg.fml.org/

base system into 757 packages where
pkg(8) can manage the FreeBSD base
system.

On the other hand, NetBSD had
developed ”syspkg” under the same
concept described above, but its de-
velopment is stagnant[NetBSD 2017].
Currently updating a base software
on NetBSD needs building from the
source code (or replacing the binary if
the major upgrade is available). It is
no quick response. So, NetBSD base
system packaging is required.

2 Comparison of
Package Manage-
ment Systems

”Package” is a collection of software,
configuration files and documents.
This collection is usually packed into a
single archive file in the format .tar.gz,
.zip, et.al. ”Package Manager” is a
software that manages package instal-
lation, deinstallation and updating.
Almost all Unix clone systems con-
sist of a base mandatory system, aux-
iliary systems (e.g. compilers, docu-
ments, X11 Window) and optional 3rd
party packages. The package manager
can modify the system by adding or
deleting optional binary packages.

2.1 Linux Distribution

”Debian” Linux and the derived dis-
tributions use ”dpkg”, ”apt-get” and
7apt” commands for package manage-
ments.

7 CentOS” and the derived distribu-
tions use "rpm” and ”yum” commands
as package management systems.

There are a few Linux distributions
(e.g. 7”Gentoo”) where the package

managers (e.g. ”Portage”) compile the
source code and install it into the sys-
tem.

2.2 FreeBSD

"FreeBSD” has a package system
called ”ports” to handle optional
3rd party packages[FreeBSD 2017].
"ports” consists of a lot of Makefiles
to describe configurations. ”pkg” com-
mand manages actual installation/de-
install action et.al.

By default, ”ports” do not in-
stall the binary package directly, but
”ports” can get and compile the source
code, and install it into the system us-
ing the ”pkg” command.

Also, "ports” can fetch and install
binary packages provided by FreeBSD.

Instead of using ”ports”, FreeBSD
users can use ”pkg” command to ma-
nipulate packages.

2.3 NetBSD

NetBSD has a portable package sys-
tem called "pkgsrc” [NetBSD 2017] de-
rived from the FreeBSD ”ports” sys-
tem. 7pkgsrc” is mainly developed
for NetBSD but also can be avail-
able on a lot of platforms: NetBSD,
FreeBSD, OpenBSD, DragonFlyBSD,
Solaris, Linux, Darwin and other com-
mercial UNIX systems. Some systems
such as DragonFlyBSD use ”pkgsrc”
as the package management system by
default.

"pkgsre” is similar to FreeBSD
"ports” but different to use another
utilities called ”pkg_*” to install or re-
move compiled software.

2.3.1 NetBSD pkg_* Utility

In NetBSD, the pkg_* utility consists
of the following commands.

e pkg add
e pkg_admin
e pkg _create

pkg_delete
e pkg_info

"pkg_create” creates a binary pack-
age and saves it in 7tgz” format.
"pkg_add” installs and upgrades
package(s) created using pkg_create.
"pkg_delete” removes the speci-
fied package(s) from the system.
"pkg_info” displays the package infor-
mation. ”pkg.admin” executes man-
agement tasks for the package system.

2.4 OpenBSD

OpenBSD package system is similar to
NetBSD one. But the package utility
is written in Perl not C. Commands
such as pkg_add and pkg_delete are the
same Perl script, which changes the be-
havior by the called argument.
OpenBSD users can write ar-
bitrary package management scripts
by using these Perl modules in
Jusr/libdata/perl5/OpenBSD/.

3 Base System Pack-
aging
3.1 Base System Packaging

There are Linux distributions manag-
ing the base system as a collection
of packages. Debian Linux is a typ-
ical one. Debian’s ”Essential” pack-
age provides the minimum functional-
ity required to generate a small base

system[Debian 2017]. Software and
functions in the base system can be
easily added and deleted by handling
them as a set of packages.

In the case of BSD Unix(s),
FreeBSD 11.0 introduced a mecha-
nism called PkgBase. FreeBSD divides
the base system into 757 packages for
pkg(8) to be able to manage the base
system.

Today NetBSD does not support
base system packaging. NetBSD costs
us a little bit of time to update a base
software. We need to build from the
source code and install it. Or we need
to fetch and extract the binary distri-
bution to overwrite the binary if the
latest major distribution is available.

For example, consider that you
want to install or remove only ”groff”
on your system.

We have roughly granular tar-balls
on NetBSD where the base system is
not packaged. We download text.tgz
from the ftp site and unpack it in the
root directory. So software other than
groff will be installed together.

Instead of wusing text.tgz, we
can install groff from 7pkgsrc”
(pkegsre/textproc/groff). But
in this case, after further up-
dates, two Zgroff” will be in-
stalled such as in /usr/bin/groff and
/usr/pkg/bin/groff. It may confuses
users. Such a problem can be solved
by packaging the base system with fine
granularity.

NetBSD had developed ”syspkg”
under the same ideas described above,
but its development is stagnant. Theo-
retically ”syspkg” can manage the base
system, but it is incomplete and not
used well. We can run build.sh with
the option -syspkgs to create a com-
piled base package, but the compiled
package cannot be installed.

3.2 Benefits of Base Sys-
tem Packaging

A system packaging a base system with
fine granularity must has advantages to
enable rapid update and flexible cus-
tomization of base system.

Typical examples needed for rapid
security updates in base system
are some critical libraries such as
”OpenSSL” and fundamental daemons
such as "OpenSSH” and ”Postfix”.

From the other point of view
on flexibility, it looks that demand
to create a small base system eas-
ily increases since cheap tiny devices
for sensor network are wished. For
example, omega2[Omega2 2016] is a
$5 micro computer ready for Linux
and FreeBSD. Also, Intel at CES
in 2017 released a credit card size
computer|[Intel 2017]. But $5 must be
too expensive to use billions of de-
vices over the world. Devices with
more small storage and memory are
preferrable, so easily customized small
operating systems must be required.

4 Yet Another NetBSD
Base System Pack-

aging

Instead of ”syspkg”, We have devel-
oped a ”basepkg.sh” [Enomoto 2016].
It is a just shell script simpler than
"syspkg” framework.

4.1 problems on ”syspkg”
framework

NetBSD source tree contains incom-
plete 7syspkg” framework, but its de-
velopment is stagnant.

The style of ”"syspkg” frame-
work is traditional. It mainly
consists of a lot of Makefiles
under usr/src/distrib/sets/ and

usr/src/distrib/syspkg/. It looks be-
yond our control to reconstruct the
current ”syspkg”. We determined that
it would be easier to develop another
script that creates base packages.

Instead of traditional Makefile
style, our script is a wrapper to use
pkg- tools based on information in
usr/src/distrib/sets/lists/. Currently
pkg_ tools is used only for ”pkgsrc”,
but these tools are used for all soft-
ware in the base system if we can
prepare proper configuration files for
pkg_* tools.

4.2 Dbasepkg.sh

"basepkg.sh” creates a binary pack-

age based on information under
"usr/src/distrib/sets/lists/”. The
script runs in two steps. (1)

prepare configuration files based on
"usr/src/distrib/sets/lists/”. (2) call
pkg_* tools to create packages actually.

4.2.1 Preparation of Configura-
tion Files

Files under ”usr/src/distrib/sets/lists/”
contains program and configuration
paths with classified information. Our
script resolves the package name based
on ”usr/src/distrib/sets/lists/”.

In addition, a configuration file is
necessary to create a compiled pack-
age. basepkg.sh uses the following set-
ting files, which is same as ”pkgsrc”
ones.

e +BUILD_INFO
Information on the environment
in which the package was created

¢ +COMMENT
Comment of the package

e +CONTENTS
Information on the path of the
file to be stored in the package

e +DESC
Description of the package

4.2.2 Package Creation

"basepkg.sh” calls pkg_create com-
mand to create the corresponding com-
piled packages in using configuration
files created above.

The created compiled package can
be installed using the pkg.add com-
mand. We can use the pkg_delete com-
mand to remove it from the system.
pkg-info command shows information
on the binary package. However, at
this moment, useful information is not
displayed since our package does not
contain the corresponding +DESC file.

We confirmed that we can
stall compiled packages basepkg.sh cre-
ates on NetBSD-7.0.2/amd64 by us-
ing pkgsrc/pkgtools/pkg_install ver-
sion 20160410.

in-

5 Future Work

As a result of development, it has
turned out that difficulty of base sys-
tem packaging comes from package
classification rather than package cre-
ation process.

Firstly, we need to investigate that
the number of packages are proper or
not. Currently ”basepkg.sh” generates
879 binary packages as classified by
usr/src/distrib/sets/lists. The number
is almost same as one of FreeBSD base
packages. But it is not clear that the
graduality is proper for operation. We

need to find the criterion of the grad-
uality and classification. It is also re-
quired when we add a new software.

Secondly, packaging should be
enhanced to run a hook since
installation/deinstallation of shared
library package mneeds the corre-
sponding daemon restarting. We
can use PRE-INSTALL and POST-
INSTALL scripts of pkg.add com-
mand, but we should prepare the
scripts, which are not covered by
usr/src/distrib/sets/lists/. We need
to arrange another configurations for
such scripts.

Lastly, we need to fix the mas-
ter database for package creation pro-
cess. There are some empty pack-
ages since there are not corresponding
binaries in +CONTENTS. For exam-
ple, ”comp-obsolete” package contains
/usr/bin/atf-compile command, but
there is no /usr/bin/atf-compile in the
binary set of NetBSD-7.0.2/amd64.

6 Conclusion

We have developed a script
"basepkg.sh” for base system pack-
aging to make NetBSD base system
more granular. It provides the first
step for more granular NetBSD base
system.

Fine granular systems become
more important for rapid update and
flexible customization of system in the
future Internet and sensor networks.
We believe that our system helps one
small step for it.

Acknowledgments

I would like to thanks Ken’ichi Fuka-
machi, NetBSD developers and Japan

NetBSD Users Group.

References

[FreeBSD 2017]
https://www.freebsd.org/ports/

[NetBSD 2017]
http://www.netbsd.org/docs/
software /packages.html

[Debian 2017]
https://www.debian.org/doc/
manuals/
debian-reference/ch02.html

[FreeBSD 2017]

https://wiki.freebsd.org/PkgBase/

[NetBSD 2017]
http://wiki.netbsd.org/projects/
project/syspkgs/

[Omega2 2016]
https://www kickstarter.com/
projects/onion/
omega2-5-iot-computer-
with-wi-fi-powered-by-linux/
description

[Intel 2017)
http://www.intel.com/content/www /us/en/
compute-card /intel-compute-
card.html

[Enomoto 2016]
https://github.com/user340/basepkg

